3 resultados para time units
em Helda - Digital Repository of University of Helsinki
Resumo:
This study examined the effects of the Greeks of the options and the trading results of delta hedging strategies, with three different time units or option-pricing models. These time units were calendar time, trading time and continuous time using discrete approximation (CTDA) time. The CTDA time model is a pricing model, that among others accounts for intraday and weekend, patterns in volatility. For the CTDA time model some additional theta measures, which were believed to be usable in trading, were developed. The study appears to verify that there were differences in the Greeks with different time units. It also revealed that these differences influence the delta hedging of options or portfolios. Although it is difficult to say anything about which is the most usable of the different time models, as this much depends on the traders view of the passing of time, different market conditions and different portfolios, the CTDA time model can be viewed as an attractive alternative.
Resumo:
The use of different time units in option pricing may lead to inconsistent estimates of time decay and spurious jumps in implied volatilities. Different time units in the pricing model leads to different implied volatilities although the option price itself is the same.The chosen time unit should make it necessary to adjust the volatility parameter only when there are some fundamental reasons for it and not due to wrong specifications of the model. This paper examined the effects of option pricing using different time hypotheses and empirically investigated which time frame the option markets in Germany employ over weekdays. The paper specifically tries to get a picture of how the market prices options. The results seem to verify that the German market behaves in a fashion that deviates from the most traditional time units in option pricing, calendar and trading days. The study also showed that the implied volatility of Thursdays was somewhat higher and thus differed from the pattern of other days of the week. Using a GARCH model to further investigate the effect showed that although a traditional tests, like the analysis of variance, indicated a negative return for Thursday during the same period as the implied volatilities used, this was not supported using a GARCH model.
Resumo:
This study evaluates three different time units in option pricing: trading time, calendar time and continuous time using discrete approximations (CTDA). The CTDA-time model partitions the trading day into 30-minute intervals, where each interval is given a weight corresponding to the historical volatility in the respective interval. Furthermore, the non-trading volatility, both overnight and weekend volatility, is included in the first interval of the trading day in the CTDA model. The three models are tested on market prices. The results indicate that the trading-time model gives the best fit to market prices in line with the results of previous studies, but contrary to expectations under non-arbitrage option pricing. Under non-arbitrage pricing, the option premium should reflect the cost of hedging the expected volatility during the option’s remaining life. The study concludes that the historical patterns in volatility are not fully accounted for by the market, rather the market prices options closer to trading time.