5 resultados para sugarcane harvester
em Helda - Digital Repository of University of Helsinki
Design and testing of stand-specific bucking instructions for use on modern cut-to-length harvesters
Resumo:
This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit
Resumo:
Linear optimization model was used to calculate seven wood procurement scenarios for years 1990, 2000 and 2010. Productivity and cost functions for seven cutting, five terrain transport, three long distance transport and various work supervision and scaling methods were calculated from available work study reports. All method's base on Nordic cut to length system. Finland was divided in three parts for description of harvesting conditions. Twenty imaginary wood processing points and their wood procurement areas were created for these areas. The procurement systems, which consist of the harvesting conditions and work productivity functions, were described as a simulation model. In the LP-model the wood procurement system has to fulfil the volume and wood assortment requirements of processing points by minimizing the procurement cost. The model consists of 862 variables and 560 restrictions. Results show that it is economical to increase the mechanical work in harvesting. Cost increment alternatives effect only little on profitability of manual work. The areas of later thinnings and seed tree- and shelter wood cuttings increase on cost of first thinnings. In mechanized work one method, 10-tonne one grip harvester and forwarder, is gaining advantage among other methods. Working hours of forwarder are decreasing opposite to the harvester. There is only little need to increase the number of harvesters and trucks or their drivers from today's level. Quite large fluctuations in level of procurement and cost can be handled by constant number of machines, by alternating the number of season workers and by driving machines in two shifts. It is possible, if some environmental problems of large scale summer time harvesting can be solved.
Resumo:
The present study evaluates the feasibility of undelimbed Scots pine (Pinus sylvestris L.) for integrated production of pulp and energy in a kraft pulp mill from the technical, economic and environmental points of view, focusing on the potential of bundle harvesting. The feasibility of tree sections for pulp production was tested by conducting an industrial wood-handling experiment, laboratory cooking and bleaching trials, using conventional small-diameter Scots pine pulpwood as a reference. These trials showed that undelimbed Scots pine sections can be processed in favourable conditions as a blend with conventional small-diameter pulpwood without reducing the pulp quality. However, fibre losses at various phases of the process may increase when using undelimbed material. In the economic evaluation, both pulp production and wood procurement costs were considered, using the relative wood paying capability of a kraft pulp mill as a determinant. The calculations were made for three Scots pine first-thinning stands with the breast-height diameter of the removal (6 12 cm) as the main distinctive factor. The supply chains included in the comparison were based on cut-to-length harvesting, whole-tree harvesting and bundle harvesting (whole-tree bundling). With the current ratio of pulp and energy prices, the wood paying capability declines with an increase in the proportion of the energy fraction of the raw material. The supply system based on the cut-to-length method was the most efficient option, resulting in the highest residual value at stump in most cases. A decline in the pulp price and an increase in the energy price improved the competitiveness of the whole-tree systems. With short truck transportation distances and low pulp prices, however, the harvesting of loose whole trees can result in higher residual value at stump in small-diameter stands. While savings in transportation costs did not compensate for the high cutting and compaction costs by the second prototype of the bundle harvester, an increase in transportation distances improved its competitiveness. Since harvesting undelimbed assortments increases nutrient export from the site, which can affect soil productivity, the whole-tree alternatives included in the present study cannot be recommended on infertile peatlands and mineral soils. The harvesting of loose whole trees or bundled whole trees implies a reduction in protective logging residues and an increase in site traffic or payloads. These factors increase the risk of soil damage, especially on peat soils with poor bearing capacity. Within the wood procurement parameters which were examined, the CO2 emissions of the supply systems varied from 13 27 kg m3. Compaction of whole trees into bundles reduced emissions from transportation by 30 39%, but these reductions were insufficient to compensate for the increased emissions from cutting and compaction.
Resumo:
Menneinä vuosikymmeninä maatalouden työt ovat ensin koneellistuneet voimakkaasti ja sittemmin mukaan on tullut automaatio. Nykyään koneiden kokoa suurentamalla ei enää saada tuottavuutta nostettua merkittävästi, vaan työn tehostaminen täytyy tehdä olemassa olevien resurssien käyttöä tehostamalla. Tässä työssä tarkastelun kohteena on ajosilppuriketju nurmisäilörehun korjuussa. Säilörehun korjuun intensiivisyys ja koneyksiköiden runsas määrä ovat työnjohdon kannalta vaativa yhdistelmä. Työn tavoitteena oli selvittää vaatimuksia maatalouden urakoinnin tueksi kehitettävälle tiedonhallintajärjestelmälle. Tutkimusta varten haastateltiin yhteensä 12 urakoitsijaa tai yhteistyötä tekevää viljelijää. Tutkimuksen perusteella urakoitsijoilla on tarvetta tietojärjestelmille.Luonnollisesti urakoinnin laajuus ja järjestelyt vaikuttavat asiaan. Tutkimuksen perusteella keskeisimpiä vaatimuksia tiedonhallinnalle ovat: • mahdollisimman laaja, yksityiskohtainen ja automaattinen tiedon keruu tehtävästä työstä • karttapohjaisuus, kuljettajien opastus kohteisiin • asiakasrekisteri, työn tilaus sähköisesti • tarjouspyyntöpohjat, hintalaskurit • luotettavuus, tiedon säilyvyys • sovellettavuus monenlaisiin töihin • yhteensopivuus muiden järjestelmien kanssa Kehitettävän järjestelmän tulisi siis tutkimuksen perusteella sisältää seuraavia osia: helppokäyttöinen suunnittelu/asiakasrekisterityökalu, toimintoja koneiden seurantaan, opastukseen ja johtamiseen, työnaikainen tiedonkeruu sekä kerätyn tiedon käsittelytoimintoja. Kaikki käyttäjät eivät kuitenkaan tarvitse kaikkia toimintoja, joten urakoitsijan on voitava valita tarvitsemansa osat ja mahdollisesti lisätä toimintoja myöhemmin. Tiukoissa taloudellisissa ja ajallisissa raameissa toimivat urakoitsijat ovat vaativia asiakkaita, joiden käyttämän tekniikan tulee olla toimivaa ja luotettavaa. Toisaalta inhimillisiä virheitä sattuu kokeneillekin, joten hyvällä tietojärjestelmällä työstä tulee helpompaa ja tehokkaampaa.
Resumo:
The aim of this thesis was to study the crops currently used for biofuel production from the following aspects: 1. what should be the average yield/ ha to reach an energy balance at least 0 or positive 2. what are the shares of the primary and secondary energy flows in agriculture, transport, processing and usage, and 3. overall effects of biofuel crop cultivation, transport, processing and usage. This thesis concentrated on oilseed rape biodiesel and wheat bioethanol in the European Union, comparing them with competing biofuels, such as corn and sugarcane-based ethanol, and the second generation biofuels. The study was executed by comparing Life Cycle Assessment-studies from the EU-region and by analyzing them thoroughly from the differences viewpoint. The variables were the following: energy ratio, hectare yield (l/ha), impact on greenhouse gas emissions (particularly CO2), energy consumption in crop growing and processing one hectare of a particular crop to biofuel, distribution of energy in processing and effects of the secondary energy flows, like e.g. wheat straw. Processing was found to be the most energy consuming part in the production of biofuels. So if the raw materials will remain the same, the development will happen in processing. First generation biodiesel requires esterification, which consumes approximately one third of the process energy. Around 75% of the energy consumed in manufacturing the first generation wheat-based ethanol is spent in steam and electricity generation. No breakthroughs are in sight in the agricultural sector to achieve significantly higher energy ratios. It was found out that even in ideal conditions the energy ratio of first generation wheat-based ethanol will remain slightly under 2. For oilseed rape-based biodiesel the energy ratios are better, and energy consumption per hectare is lower compared to wheat-based ethanol. But both of these are lower compared to e.g. sugarcane-based ethanol. Also the hectare yield of wheat-based ethanol is significantly lower. Biofuels are in a key position when considering the future of the world’s transport sector. Uncertainties concerning biofuels are, however, several, like the schedule of large scale introduction to consumer markets, technologies used, raw materials and their availability and - maybe the biggest - the real production capacity in relation to the fuel consumption. First generation biofuels have not been the expected answer to environmental problems. Comparisons made show that sugarcane-based ethanol is the most prominent first generation biofuel at the moment, both from energy and environment point of view. Also palmoil-based biodiesel looks promising, although it involves environmental concerns as well. From this point of view the biofuels in this study - wheat-based ethanol and oilseed rape-based biodiesel - are not very competitive options. On the other hand, crops currently used for fuel production in different countries are selected based on several factors, not only based on thier relative general superiority. It is challenging to make long-term forecasts for the biofuel sector, but it can be said that satisfying the world's current and near future traffic fuel consumption with biofuels can only be regarded impossible. This does not mean that biofuels shoud be rejected and their positive aspects ignored, but maybe this reality helps us to put them in perspective. To achieve true environmental benefits through the usage of biofuels there must first be a significant drop both in traffic volumes and overall fuel consumption. Second generation biofuels are coming, but serious questions about their availability and production capacities remain open. Therefore nothing can be taken for granted in this issue, expect the need for development.