10 resultados para subsurface

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During their main sequence evolution, massive stars can develop convective regions very close to their surface. These regions are caused by an opacity peak associated with iron ionization. Cantiello et al. (2009) found a possible connection between the presence of sub-photospheric convective motions and small scale stochastic velocities in the photosphere of early-type stars. This supports a physical mechanism where microturbulence is caused by waves that are triggered by subsurface convection zones. They further suggest that clumping in the inner parts of the winds of OB stars could be related to subsurface convection, and that the convective layers may also be responsible for stochastic excitation of non-radial pulsations. Furthermore, magnetic fields produced in the iron convection zone could appear at the surface of such massive stars. Therefore subsurface convection could be responsible for the occurrence of observable phenomena such as line profile variability and discrete absorption components. These phenomena have been observed for decades, but still evade a clear theoretical explanation. Here we present preliminary results from 3D MHD simulations of such subsurface convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorus (P) retention properties of soils typical for boreal forest, i.e. podzolic soil and peat soils, vary significantly, but the range of this variation has not been sufficiently documented. To assess the usefulness of buffer zones used in forestry in removing P from the discharge by chemical sorption in soil, and to estimate the risk of P leaching after forestry operations, more data is needed on soil P retention properties. P retention properties of soils were studied at clear-cut areas, unharvested buffer zones adjoining the clear-cut and at peatland buffer zone areas. Desorption-sorption isotherms were determined for the humus layer, the mineral soil horizons E, B and C of the Podzol profile and for the surface layer peat (0-15 cm) and the subsurface layer peat (15-30 cm). The efficiency of buffer zones in retaining P was studied at six peatland buffer zone areas by adding P-containing solute in the inflow. A tracer study was conducted at one of the buffer zone areas to determine the allocation of the added P in soil and vegetation. Measured sorption or desorption rather than parameter values of fitted sorption equations described P desorption and sorption behaviour in soil. The highest P retention efficiency was in the B horizon and consequently, if contact occurred or was established between the soluble P in the water and the soil B horizon, the risk of P leaching was low. Humus layer was completely incapable of retaining P after clear-cutting. In the buffer zones, the decrease in P retention properties in the humus layer and the low amount of P sorbed by it indicated that the importance of the layer in the functioning of buffer zones is low. The peatland buffer zone areas were efficient in retaining soluble P from inflow. P sorption properties of the peat soil at the buffer zone areas varied largely but the contribution of P sorption in the peat was particularly important during high flow in spring, when the vegetation was not fully developed. Factors contributing to efficient P retention were large buffer size and low hydrological load whereas high hydrological load combined with the formation of preferential flow paths, especially during early spring or late autumn was disadvantageous. However, small buffer zone areas, too, may be efficient in reducing P load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overwhelming majority of all the research on soil phosphorus (P) has been carried out with soil samples taken from the surface soils only, and our understanding of the forms and the reactions of P at a soil profile scale is based on few observations. In Finland, the interest in studying the P in complete soil profiles has been particularly small because of the lack of tradition in studying soil genesis, morphology, or classification. In this thesis, the P reserves and the retention of orthophosphate phosphorus (PO4-P) were examined in four cultivated mineral soil profiles in Finland (three Inceptisols and one Spodosol). The soils were classified according to the U.S. Soil Taxonomy and soil samples were taken from the genetic horizons in the profiles. The samples were analyzed for total P concentration, Chang and Jackson P fractions, P sorption properties, concentrations of water-extractable P, and for concentrations of oxalate-extractable Al and Fe. Theoretical P sorption capacities and degrees of P saturation were calculated with the data from the oxalate-extractions and the P fractionations. The studied profiles can be divided into sections with clearly differing P characteristics by their master horizons Ap, B and C. The C (or transitional BC) horizons below an approximate depth of 70 cm were dominated by, assumingly apatitic, H2SO4-soluble P. The concentration of total P in the C horizons ranged from 729 to 810 mg kg-1. In the B horizons between the depths of 30 and 70 cm, a significant part of the primary acid-soluble P has been weathered and transformed to secondary P forms. A mean weathering rate of the primary P in the soils was estimated to vary between 230 and 290 g ha-1 year-1. The degrees of P saturation in the B and C horizons were smaller than 7%, and the solubility of PO4-P was negligible. The P conditions in the Ap horizons differed drastically from those in the subsurface horizons. The high concentrations of total P (689-1870 mg kg-1) in the Ap horizons are most likely attributable to long-term cultivation with positive P balances. A significant proportion of the P in the Ap horizons occurred in the NH4F- and NaOH-extractable forms and as organic P. These three P pools, together with the concentrations of oxalate-extractable Al and Fe, seem to control the dynamics of PO4-P in the soils. The degrees of P saturation in the Ap horizons were greater (8-36%) than in the subsurface horizons. This was also reflected in the sorption experiments: Only the Ap horizons were able to maintain elevated PO4-P concentrations in the solution phase − all the subsoil horizons acted as sinks for PO4-P. Most of the available sorption capacity in the soils is located in the B horizons. The results suggest that this capacity could be utilized in reducing the losses of soluble P from excessively fertilized soils by mixing highly sorptive material from the B horizons with the P-enriched surface soil. The drastic differences in the P characteristics observed between adjoining horizons have to be taken into consideration when conducting soil sampling. Sampling of subsoils has to be made according to the genetic horizons or at small depth increments. Otherwise, contrasting materials are likely to be mixed in the same sample; and the results of such samples are not representative of any material present in the studied profile. Air-drying of soil samples was found to alter the results of the sorption experiments and the water extractions. This indicates that the studies on the most labile P forms in soil should be carried out with moist samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baltic Sea was studied with respect to selected organic contaminants and their ecotoxicology. The research consisted of analyses of total hydrocarbons, polycyclic aromatic hydrocarbons, bile metabolites, hepatic ethoxyresorufin-O-deethylase (EROD) activity, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The contaminants were measured from various matrices, such as seawater, sediment and biota. The methods of analysis were evaluated and refined to comparability of the results. Polyaromatic hydrocarbons, originating from petroleum, are known to be among the most harmful substances to the marine environment. In Baltic subsurface water, seasonal dependence of the total hydrocarbon concentrations (THCs) was seen. Although concentrations of parent polycyclic aromatic hydrocarbons (PAHs) in sediment surface varied between 64 and 5161 ug kg-1 (dw), concentrations above 860 ug kg-1 (dw) were found in all the studied sub-basins of the Baltic Sea. Concentrations commonly considered to substantially increase the risk of liver disease and reproductive impairment in fish, as well as potential effects on growth (above 1000 ug kg-1 dw), were found in all the studied sub-basins of the Baltic Sea except Kattegat. Thus, considerable pollution in sediments was indicated. In bivalves, the sums of 12 PAHs varied on a wet weight basis between 44 and 298 ug kg-1 (ww). The predominant PAHs were high molecular weight and the PAH profiles of M. balthica differed from those found in sediment from the same area. The PAHs were both pyrolytic and petrogenic in origin, and a contribution from diesel engines was found, which indicates pollution of the Baltic Sea, most likely caused by the steadily increasing shipping in the area. The HPLC methods developed for hepatic EROD activity and bile metabolite measurements proved to be fast and suitable for the study of biological effects. A mixed function oxygenase enzyme system in Baltic Sea perch collected from the Gulf of Finland was induced slightly: EROD activity in perch varied from 0.30 14 pmol min-1 mg-1 protein. This range can be considered to be comparable to background values. Recent PAH exposure was also indicated by enhanced levels (213 and 1149 ug kg-1) of the bile metabolite 1-hydroxypyrene. No correlation was indicated between hepatic EROD activity and concentration of 1-hydroxypyrene in bile. PCBs and OCPs were observed in Baltic Sea sediment, bivalves and herring. Sums of seven CBs in surface sediment (0 5 cm) ranged from 0.04 to 6.2 ug kg-1 (dw) and sums of three DDTs from 0.13 to 5.0 ug kg-1 (dw). The highest levels of contaminants were found in the most eastern area of the Gulf of Finland where the highest total carbon and nitrogen content was found and where the lowest percentage proportion of p,p -DDT was found. The highest concentrations of CBs and the lowest concentration of DDTs were found in M. balthica from the Gulf of Finland. The highest levels of DDTs were found in M. balthica from the Hanö Bight, which is the outer part of the Bornholm Basin close to the Swedish mainland. In bivalves, the sums of seven CBs were 72 108 ug kg-1 (lw) and the sums of three DDTs were 66 139 ug kg-1 (lw). Results from temporal trend monitoring showed, that during the period 1985 2002, the concentrations of seven CBs in two-year-old female Baltic herring were clearly decreased, from 9 16 to 2 6 ug kg-1 (ww) in the northern Baltic Sea. At the same time, concentrations of three DDTs declined from 8 15 to 1 5 ug kg-1 (ww). The total concentration of the fat-soluble CBs and DDTs in Baltic herring muscle was shown to be age-dependent; the average concentrations in ten-year-old Baltic herring were three to five-fold higher than in two-year-old herring. In Baltic herring and bivalves, as well as in surface sediments, CB 138 and CB153 were predominant among CBs, whereas among DDTs p,p'-DDD predominated in sediment and p,p'-DDE in bivalves and Baltic herring muscle. Baltic Sea sediments are potential sources of contaminants that may become available for bioaccumulation. Based on ecotoxicological assessment criteria, cause for concern regarding CBs in sediments was indicated for the Gulf of Finland and the northern Baltic Proper, and for the northern Baltic Sea regarding CBs in Baltic herring more than two years old. Statistical classification of selected organic contaminants indicated high-level contamination for p,p'-DDT, p,p'-DDD, p,p'-DDE, total DDTs, HCB, CB118 and CB153 in muscle of Baltic herring in age groups two to ten years; in contrast, concentrations of a-HCH and g-HCH were found to be moderate. The concentrations of DDTs and CBs in bivalves is sufficient to cause biological effects, and demonstrates that long-term biological effects are still possible in the case of DDTs in the Hanö Bight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The driving force behind this study has been the need to develop and apply methods for investigating the hydrogeochemical processes of significance to water management and artificial groundwater recharge. Isotope partitioning of elements in the course of physicochemical processes produces isotopic variations to their natural reservoirs. Tracer property of the stable isotope abundances of oxygen, hydrogen and carbon has been applied to investigate hydrogeological processes in Finland. The work described here has initiated the use of stable isotope methods to achieve a better understanding of these processes in the shallow glacigenic formations of Finland. In addition, the regional precipitation and groundwater records will supplement the data of global precipitation, but as importantly, provide primary background data for hydrological studies. The isotopic composition of oxygen and hydrogen in Finnish groundwaters and atmospheric precipitation was determined in water samples collected during 1995 2005. Prior to this study, no detailed records existed on the spatial or annual variability of the isotopic composition of precipitation or groundwaters in Finland. Groundwaters and precipitation in Finland display a distinct spatial distribution of the isotopic ratios of oxygen and hydrogen. The depletion of the heavier isotopes as a function of increasing latitude is closely related to the local mean surface temperature. No significant differences were observed between the mean annual isotope ratios of oxygen and hydrogen in precipitation and those in local groundwaters. These results suggest that the link between the spatial variability in the isotopic composition of precipitation and local temperature is preserved in groundwaters. Artificial groundwater recharge to glaciogenic sedimentary formations offers many possibilities to apply the isotopic ratios of oxygen, hydrogen and carbon as natural isotopic tracers. In this study the systematics of dissolved carbon have been investigated in two geochemically different glacigenic groundwater formations: a typical esker aquifer at Tuusula, in southern Finland and a carbonate-bearing aquifer with a complex internal structure at Virttaankangas, in southwest Finland. Reducing the concentration of dissolved organic carbon (DOC) in water is a primary challenge in the process of artificial groundwater recharge. The carbon isotope method was used to as a tool to trace the role of redox processes in the decomposition of DOC. At the Tuusula site, artificial recharge leads to a significant decrease in the organic matter content of the infiltrated water. In total, 81% of the initial DOC present in the infiltrated water was removed in three successive stages of subsurface processes. Three distinct processes in the reduction of the DOC content were traced: The decomposition of dissolved organic carbon in the first stage of subsurface flow appeared to be the most significant part in DOC removal, whereas further decrease in DOC has been attributed to adsorption and finally to dilution with local groundwater. Here, isotope methods were used for the first time to quantify the processes of DOC removal in an artificial groundwater recharge. Groundwaters in the Virttaankangas aquifer are characterized by high pH values exceeding 9, which are exceptional for shallow aquifers on glaciated crystalline bedrock. The Virttaankangas sediments were discovered to contain trace amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. Understanding the origin of the unusual geochemistry of the Virttaankangas groundwaters is an important issue for constraining the operation of the future artificial groundwater plant. The isotope ratios of oxygen and carbon in sedimentary carbonate minerals have been successfully applied to constrain the origin of the dispersed calcite in the Virttaankangas sediments. The isotopic and chemical characteristics of the groundwater in the distinct units of aquifer were observed to vary depending on the aquifer mineralogy, groundwater residence time and the openness of the system to soil CO2. The high pH values of > 9 have been related to dissolution of calcite into groundwater under closed or nearly closed system conditions relative to soil CO2, at a low partial pressure of CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biodegradation on different levels starting from a versatile aromatic degrader Sphingobium sp. HV3 and its megaplasmid, extending to revelation of diversity of key catabolic enzymes in the environment and finally studying birch rhizoremediation in PAH-polluted soil. To understand biodegradation of aromatics on bacterial species level, the aromatic degradation capacity of Sphingobium sp. HV3 and the role of the plasmid pSKY4, was studied. Toluene, m-xylene, biphenyl, fluorene, phenanthrene were detected as carbon and energy sources of the HV3 strain. Tn5 transposon mutagenesis linked the degradation capacity of toluene, m-xylene, biphenyl and naphthalene to the pSKY4 plasmid and qPCR expression analysis showed that plasmid extradiol dioxygenases genes (bphC and xylE) are inducted by phenanthrene, m-xylene and biphenyl whereas the 2,4-dichlorophenoxyacetic acid herbicide induced the chlorocatechol 1,2-dioxygenase gene (tfdC) from the ortho-pathway. A method to study upper meta-pathway extradiol dioxygenase gene diversity in soil was developed. The extradiol dioxygenases catalyse cleavage of the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon (meta-cleavage). A high diversity of extradiol dioxygenases were detected from polluted soils. The detected extradiol dioxygenases showed sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Five groups of extradiol dioxygenases contained sequences with no close homologues in the database, representing novel genes. In rhizoremediation experiment with birch (Betula pendula) treatment specific changes of extradiol dioxygenase communities were shown. PAH pollution changed the bulk soil extradiol dioxygenase community structure and birch rhizosphere contained a more diverse extradiol dioxygenase community than the bulk soil showing a rhizosphere effect. The degradation of pyrene in soil was enhanced with birch seedlings compared to soil without birch. The complete 280,923 kb nucleotide sequence of pSKY4 plasmid was determined. The open reading frames of pSKY4 were divided into putative conjugative transfer, aromatic degradation, replication/maintaining and transposition/integration function-encoding proteins. Aromatic degradation orfs shared high similarity to corresponding genes in pNL1, a plasmid from the deep subsurface strain Novosphingobium aromaticivorans F199. The plasmid backbones were considerably more divergent with lower similarity, which suggests that the aromatic pathway has functioned as a plasmid independent mobile genetic element. The functional diversity of microbial communities in soil is still largely unknown. Several novel clusters of extradiol dioxygenases representing catabolic bacteria, whose function, biodegradation pathways and phylogenetic position is not known were amplified with single primer pair from polluted soils. These extradiol dioxygenase communities were shown to change upon PAH pollution, which indicates that their hosts function in PAH biodegradation in soil. Although the degradation pathways of specific bacterial species are substantially better depicted than pathways in situ, the evolution of degradation pathways for the xenobiotic compounds is largely unknown. The pSKY4 plasmid contains aromatic degradation genes in putative mobile genetic element causing flexibility/instability to the pathway. The localisation of the aromatic biodegradation pathway in mobile genetic elements suggests that gene transfer and rearrangements are a competetive advantage for Sphingomonas bacteria in the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Antarctic system comprises of the continent itself, Antarctica, and the ocean surrounding it, the Southern Ocean. The system has an important part in the global climate due to its size, its high latitude location and the negative radiation balance of its large ice sheets. Antarctica has also been in focus for several decades due to increased ultraviolet (UV) levels caused by stratospheric ozone depletion, and the disintegration of its ice shelves. In this study, measurements were made during three Austral summers to study the optical properties of the Antarctic system and to produce radiation information for additional modeling studies. These are related to specific phenomena found in the system. During the summer of 1997-1998, measurements of beam absorption and beam attenuation coefficients, and downwelling and upwelling irradiance were made in the Southern Ocean along a S-N transect at 6°E. The attenuation of photosynthetically active radiation (PAR) was calculated and used together with hydrographic measurements to judge whether the phytoplankton in the investigated areas of the Southern Ocean are light limited. By using the Kirk formula the diffuse attenuation coefficient was linked to the absorption and scattering coefficients. The diffuse attenuation coefficients (Kpar) for PAR were found to vary between 0.03 and 0.09 1/m. Using the values for KPAR and the definition of the Sverdrup critical depth, the studied Southern Ocean plankton systems were found not to be light limited. Variabilities in the spectral and total albedo of snow were studied in the Queen Maud Land region of Antarctica during the summers of 1999-2000 and 2000-2001. The measurement areas were the vicinity of the South African Antarctic research station SANAE 4, and a traverse near the Finnish Antarctic research station Aboa. The midday mean total albedos for snow were between 0.83, for clear skies, and 0.86, for overcast skies, at Aboa and between 0.81 and 0.83 for SANAE 4. The mean spectral albedo levels at Aboa and SANAE 4 were very close to each other. The variations in the spectral albedos were due more to differences in ambient conditions than variations in snow properties. A Monte-Carlo model was developed to study the spectral albedo and to develop a novel nondestructive method to measure the diffuse attenuation coefficient of snow. The method was based on the decay of upwelling radiation moving horizontally away from a source of downwelling light. This was assumed to have a relation to the diffuse attenuation coefficient. In the model, the attenuation coefficient obtained from the upwelling irradiance was higher than that obtained using vertical profiles of downwelling irradiance. The model results were compared to field measurements made on dry snow in Finnish Lapland and they correlated reasonably well. Low-elevation (below 1000 m) blue-ice areas may experience substantial melt-freeze cycles due to absorbed solar radiation and the small heat conductivity in the ice. A two-dimensional (x-z) model has been developed to simulate the formation and water circulation in the subsurface ponds. The model results show that for a physically reasonable parameter set the formation of liquid water within the ice can be reproduced. The results however are sensitive to the chosen parameter values, and their exact values are not well known. Vertical convection and a weak overturning circulation is generated stratifying the fluid and transporting warmer water downward, thereby causing additional melting at the base of the pond. In a 50-year integration, a global warming scenario mimicked by a decadal scale increase of 3 degrees per 100 years in air temperature, leads to a general increase in subsurface water volume. The ice did not disintegrate due to the air temperature increase after the 50 year integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earth s ice shelves are mainly located in Antarctica. They cover about 44% of the Antarctic coastline and are a salient feature of the continent. Antarctic ice shelf melting (AISM) removes heat from and inputs freshwater into the adjacent Southern Ocean. Although playing an important role in the global climate, AISM is one of the most important components currently absent in the IPCC climate model. In this study, AISM is introduced into a global sea ice-ocean climate model ORCA2-LIM, following the approach of Beckmann and Goosse (2003; BG03) for the thermodynamic interaction between the ice shelf and ocean. This forms the model ORCA2-LIM-ISP (ISP: ice shelf parameterization), in which not only all the major Antarctic ice shelves but also a number of minor ice shelves are included. Using these two models, ORCA2-LIM and ORCA2-LIM-ISP, the impact of addition of AISM and increasing AISM have been investigated. Using the ORCA2-LIM model, numerical experiments are performed to investigate the sensitivity of the polar sea ice cover and the Antarctic Circumpolar Current (ACC) transport through Drake Passage (DP) to the variations of three sea ice parameters, namely the thickness of newly formed ice in leads (h0), the compressive strength of ice (P*), and the turning angle in the oceanic boundary layer beneath sea ice (θ). It is found that the magnitudes of h0 and P* have little impact on the seasonal sea ice extent, but lead to large changes in the seasonal sea ice volume. The variation in turning angle has little impact on the sea ice extent and volume in the Arctic but tends to reduce them in the Antarctica when ignored. The magnitude of P* has the least impact on the DP transport, while the other two parameters have much larger influences. Numerical results from ORCA2-LIM and ORCA2-LIM-ISP are analyzed to investigate how the inclusion of AISM affects the representation of the Southern Ocean hydrography. Comparisons with data from the World Ocean Circulation Experiment (WOCE) show that the addition of AISM significantly improves the simulated hydrography. It not only warms and freshens the originally too cold and too saline bottom water (AABW), but also warms and enriches the salinity of the originally too cold and too fresh warm deep water (WDW). Addition of AISM also improves the simulated stratification. The close agreement between the simulation with AISM and the observations suggests that the applied parameterization is an adequate way to include the effect of AISM in a global sea ice-ocean climate model. We also investigate the models capability to represent the sea ice-ocean system in the North Atlantic Ocean and the Arctic regions. Our study shows both models (with and without AISM) can successfully reproduce the main features of the sea ice-ocean system. However, both tend to overestimate the ice flux through the Nares Strait, produce a lower temperature and salinity in the Hudson Bay, Baffin Bay and Davis Strait, and miss the deep convection in the Labrador Sea. These deficiencies are mainly attributed to the artificial enlargement of the Nares Strait in the model. In this study, the impact of increasing AISM on the global sea ice-ocean system is thoroughly investigated. This provides a first idea regarding changes induced by increasing AISM. It is shown that the impact of increasing AISM is global and most significant in the Southern Ocean. There, increasing AISM tends to freshen the surface water, to warm the intermediate and deep waters, and to freshen and warm the bottom water. In addition, increasing AISM also leads to changes in the mixed layer depths (MLD) in the deep convection sites in the Southern Ocean, deepening in the Antarctic continental shelf while shoaling in the ACC region. Furthermore, increasing AISM influences the current system in the Southern Ocean. It tends to weaken the ACC, and strengthen the Antarctic coastal current (ACoC) as well as the Weddell Gyre and the Ross Gyre. In addition to the ocean system, increasing AISM also has a notable impact on the Antarctic sea ice cover. Due to the cooling of seawater, sea ice concentration and thickness generally become higher. In austral winter, noticeable increases in sea ice concentration mainly take place near the ice edge. In regards with sea ice thickness, large increases are mainly found along the coast of the Weddell Sea, the Bellingshausen and Amundsen Seas, and the Ross Sea. The overall thickening of sea ice leads to a larger volume of sea ice in Antarctica. In the North Atlantic, increasing AISM leads to remarkable changes in temperature, salinity and density. The water generally becomes warmer, more saline and denser. The most significant warming occurs in the subsurface layer. In contrast, the maximum salinity increase is found at the surface. In addition, the MLD becomes larger along the Greenland-Scotland-Iceland ridge. Global teleconnections due to AISM are studied. The AISM signal is transported with the surface current: the additional freshwater from AISM tends to enhance the northward spreading of the surface water. As a result, more warm and saline water is transported from the tropical region to the North Atlantic Ocean, resulting in warming and salt enrichment there. It would take about 30 40 years to establish a systematic noticeable change in temperature, salinity and MLD in the North Atlantic Ocean according to this study. The changes in hydrography due to increasing AISM are compared with observations. Consistency suggests that increasing AISM is highly likely a major contributor to the recent observed changes in the Southern Ocean. In addition, the AISM might contribute to the salinity contrast between the North Atlantic and North Pacific, which is important for the global thermohaline circulation.