7 resultados para snow
em Helda - Digital Repository of University of Helsinki
Resumo:
Snow cover is very sensitive to climate change and has a large feedback effect on the climate system due to the high albedo. Snow covers almost all surfaces in Antarctica and small changes in snow properties can mean large changes in absorbed radiation. In the ongoing discussion of climatic change, the mass balance of Antarctica has received increasing focus during recent decades, since its reaction to global warming strongly influences sea-level change. The aim of the present work was to examine the spatial and temporal variations in the physical and chemical characteristics of surface snow and annual accumulation rates in western Dronning Maud Land, Antarctica. The data were collected along a 350-km-long transect from the coast to the plateau during the years 1999-2004 as a part of the Finnish Antarctic Research Programme (FINNARP). The research focused on the most recent annual accumulation in the coastal area. The results show that the distance from the sea, and the moisture source, was the most predominant factor controlling the variations in both physical (conductivity, grain size, oxygen isotope ratio and accumulation) and chemical snow properties. The sea-salt and sulphur-containing components predominated in the coastal region. The local influences of nunataks and topographic highs were also visible on snow. The variations in all measured properties were wide within single sites mostly due to redistribution by winds and sastrugi topography, which reveals the importance of the spatially representative measurements. The mean accumulations occurred on the ice shelf, in the coastal region and on the plateau: 312 ± 28, 215 ± 43 and 92 ± 25 mm w.e., respectively. Depth hoar layers were usually found under the thin ice crust and were associated with a low dielectric constant and high concentrations of nitrate. Taking into account the vast size of the Antarctic ice sheet and its geographic characteristics, it is important to extend investigation of the distribution of surface snow properties and accumulation to provide well-documented data.
Resumo:
Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.
Resumo:
Yhteenveto: Lumimallit vesistöjen ennustemalleissa
Resumo:
Winter is a significant period for the seasonality of northern plants, but is often overlooked when studying the interactions of plants and their environment. This study focuses on the effects of overwintering conditions, including warm winter periods, snow, and snowmelt on boreal and sub-Arctic field layer plants. Wintertime photosynthesis and related physiological factors of evergreen dwarf shrubs, particularly of Vaccinium vitis-idaea, are emphasised. The work combines experiments both in the field and in growth chambers with measurements in natural field conditions. Evergreen dwarf shrubs are predominantly covered by snow in the winter. The protective snow cover provides favourable conditions for photosynthesis, especially during the spring before snowmelt. The results of this study indicate that photosynthesis occurs under the snow in V. vitis-idaea. The light response of photosynthesis determined in field conditions during the period of snow cover shows that positive net CO2 exchange is possible under the snow in the prevailing light and temperature. Photosynthetic capacity increases readily during warm periods in winter and the plants are thus able to replenish carbohydrate reserves lost through respiration. Exposure to low temperatures in combination with high light following early snowmelt can set back photosynthesis as sustained photoprotective measures are activated and photodamage begins to build up. Freezing may further decrease the photosynthetic capacity. The small-scale distribution of many field layer plants, including V. vitis-idaea and other dwarf shrubs, correlates with the snow distribution in a forest. The results of this study indicate that there are species-specific differences in the snow depth affinity of the field and ground layer species. Events and processes taking place in winter can have a profound effect on the overall performance of plants and on the interactions between plants and their environment. Understanding the processes involved in the overwintering of plants is increasingly important as the wintertime climate in the north is predicted to change in the future.
Resumo:
The RASCALS expedition spent over three weeks at the Summit camp research station near the top of the Greenland Ice Sheet during polar summer 2010. During this time, detailed measurements of the physical and optical properties of Arctic perennial snow were carried out concurrently with snow albedo and reflectance measurements. Favorable weather conditions during the campaign enabled the collection of a large dataset on Arctic snow albedo and associated quantities for use in developing and validating remote sensing algorithms for snow albedo using satellites. This report provides a description of the measurements and conditions during the campaign. RASCALS-retkikunnan tehtävä oli tutkia Grönlannin mannerjäätikön lumen fysikaalisia ja optisia ominaisuuksia sekä Auringon valon vuorovaikutusta lumen kanssa. Retikunta vietti hieman yli kolme viikkoa mannerjäätikön keskellä sijaitsevalla Summit Camp-tutkimusasemalla tehden mittauksia. Sääolot suosivat kampanjaa, jonka seurauksena onnistuttiin keräämään laaja ja monipuolinen tietoaineisto mannerjäätikön lumen pintakerroksesta ja eritoten lumen heijastavuuden (albedon)käyttäytymisestä. Aineisto on hyödyllinen kehitettäessä ja varmennettaessa lumen albedon kaukokartoitusmenetelmiä satelliiteilla.