58 resultados para small-delay defects

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The risk is obvious for soft tissue complications after operative treatment of the Achilles tendon, calcaneal bone or after ankle arthroplasty. Such complications after malleolar fractures are, however, seldom seen. The reason behind these complications is that the soft tissue in this region is tight and does not allow much tension to the wound area after surgery. Furthermore the area of operation may be damaged by swelling after the injury, or can be affected by peripheral vascular disease. While complications in this area are unavoidable, they can be diminished. This study attempts to highlight the possible predisposing factors leading to complications in these operations and on the other hand, to determine the solutions to solve soft tissue problems in this region. The study consists of five papers. The first article is a reprint on the soft tissue reconstruction of 25 patients after their complicated Achilles tendon surgeries were analysed. The second study reviews a series of 126 patients after having undergone an operative treatment of calcaneal bone fractures and analyses the complications and possible reasons behind them. The third part analyses a series of corrections of 35 soft tissue complications after calcaneal fracture operations. The fourth part reviews a series of 7 patients who had undergone complicated ankle arthroplasties. The last article presents a series of post operative lateral defects of the ankle treated with a less frequently used distally based peroneus brevis muscle flap and analyses the results. What can be conducted from these studies is that in general, the results after the correction of even severe soft tissue complications in the ankle region are good. For the small defects around the Achilles tendon, the local flaps are useful, but the larger defects are best treated with a free flap. We found that a long delay from trauma to surgery and a long operating time were predisposing factors that lead to soft tissue complications after operatively treated calcaneal bone fractures. The more severe the injury, the greater the risk for wound complication. Surprisingly, the long-term results after infected calcaneal osteosyntheses were acceptable and the calcaneal bone seems to tolerate chronic infections very well if the soft tissue is reconstructed successfully. Behind the complicated ankle arthroplasties, unexpectedly high number of cases experiencing arteriosclerosis of the lower extremity was found. These complications lead to ankle fusion but can be solved with a free flap if the vascularity is intact or can be reconstructed. For this reason a vascular examination of the lower extremity arteries of the patients going to ankle arthroplasty is strongly recommended. Moreover postoperative lateral malleolar wound infections which typically create lateral ankle defects can successfully be treated with a peroneus brevis muscle flap covered with a free skin graft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a predisposing gene for a recently characterized cancer syndrome, hereditary leiomyomatosis and renal cell cancer (HLRCC), was identified and the role of the gene was investigated in other familial cancers and in nonsyndromic tumorigenesis. HLRCC is a dominantly inherited disorder predisposing predominantly to uterine and skin leiomyomas, and also to renal cell cancer and uterine leiomyosarcoma. The disease gene was recently localized in Finnish families to 1q42-q43 by a genome-wide linkage search. Independently in the UK, a clinically similar condition, multiple cutaneous and uterine leiomyomata (MCUL), was linked to the same chromosomal region, strongly suggesting that HLRCC and MCUL are actually a single syndrome. Linkage results were confirmed by detecting loss of heterozygosity (LOH) at the disease locus in most of the patients' tumors, suggesting that this predisposing gene acts as a tumor suppressor. Through detailed investigation by genotyping of microsatellite markers and haplotype construction in Finnish and UK HLRCC/MCUL families we were able to narrow the disease locus down to 1.6 Mb. Extensive mutation screening of known and predicted transcripts in the target region resulted in identification of the HLRCC predisposing gene, fumarase (fumarate hydratase, FH). FH is a key enzyme in energy metabolism, catalyzing fumarate to malate in the tricarboxylic acid cycle (TCAC) in mitochondria. Germline alterations in FH segregating with the disease were detected in 25 of 42 HLRCC/MCUL families including whole-gene deletions, truncating small deletions/insertions and nonsense mutations, as well as substitutions or deletions of highly conserved amino acids. Biallelic inactivation was detected in almost all studied tumors of HLRCC patients. Furthermore, FH enzyme activity was reduced in the patients' normal tissues and was completely or virtually absent from tumors. Based on these findings, we extensively demonstrated that mutations in FH underlie the HLRCC/MCUL syndrome. In our studies of other familial cancers, evidence for involvement of FH defects was not found in familial prostate and breast cancers. To investigate the role of FH in sporadic tumorigenesis, we analyzed 652 lesions, including a series of 353 nonsyndromic counterparts of tumor types associated with HLRCC. Mutations in nonsyndromic tumors were rare and appeared to be limited to tumor types observed in the hereditary form of the disease. Biallelic inactivation of FH was detected in a uterine leiomyosarcoma, a cutaneous leiomyoma, a soft-tissue sarcoma, and in two uterine leiomyomas. In the uterine leiomyosarcoma and the cutaneous lesion FH mutations originated from the germline whereas the soft-tissue sarcoma harbored purely somatic changes. In uterine leiomyomas somatic mutations were detected in the two out of five tumors with LOH at the FH locus. Our findings demonstrate that FH inactivation is also involved in nonhereditary tumor development, and further support the hypothesis that FH acts as a tumor suppressor. The role of FH in predisposition to malignancies, renal cell carcinoma and leiomyosarcoma is important in the diagnosis and prevention of cancer among HLRCC patients. This study is of general clinical interest, because prior to our findings, little was known about the molecular genetics of uterine leiomyomas, the most common tumors of women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a recently characterized cancer syndrome which predisposes to cutaneous and uterine leiomyomas as well as renal cell carcinoma (RCC). Uterine leiomyosarcoma (ULMS) has also been observed in certain Finnish HLRCC families. The predisposing gene for this syndrome, fumarate hydratase (FH), was identified in 2002. The well-known function of FH is in the tricarboxylic acid cycle (TCAC) in the energy metabolism of cells. As FH is a novel cancer gene, the role of FH mutations in tumours is in general unknown. Similarly, the mechanisms through which defective FH is associated with tumourigenesis are unclear. The loss of a wild type allele has been observed in virtually all HLRCC patients tumours and the FH enzyme activities are either totally lost or remarkably reduced in the tissues of mutation carrier patients. Therefore, FH is assumed to function as a tumour suppressor. Mutations in genes encoding subunits of other TCAC enzyme SDH have also been reported recently in tumours: mutations in SDHB, SDHC, and SDHD genes predispose to paraganglioma and pheochromocytoma. In the present study, mutations in the SDHB gene were observed to predispose to RCC. This was the first time that mutations in SDHB have been detected in extra-paraganglial tumours. Two different SDHB mutations were observed in two unrelated families. In the first family, the index patient was diagnosed with RCC at the age of 24 years. Additionally, his mother with a paraganglioma (PGL) of the heart and his maternal uncle with lung cancer were both carriers of the mutation. The RCC of the index patient and the PGL of his mother showed LOH. In the other family, an SDHB mutation was detected in two siblings who were both diagnosed with RCC at the ages of 24 and 26 years. Both of the siblings also suffered PGL. All these tumours showed LOH. Therefore, we concluded that mutations in SDHB predispose also for RCC in certain families. Several tumour types were analysed for FH mutations to define the role of FH mutations in these tumour types. In addition, patients with a putative cancer phenotype were analysed to identify new HLRCC families. Three FH variants were detected, of which two were novel. One of the variants was observed in a patient diagnosed with ULMS at the age of 41 years. However, LOH was not detected in the tumour tissue. The FH enzyme activity of the mutated protein was clearly reduced, being 43% of the activity of the normal protein. Together with the results from an earlier study we calculated that the prevalence of FH mutations in Finnish non-syndromic ULMS is around 2.4%. Therefore, FH mutations seem to have a minor role in the pathogenesis on non-syndromic ULMS. Two other germline variants were detected in a novel tumour type, ovarian mucinous cystadenoma. However, tumour tissues of the patients were not available for LOH studies and therefore LOH status remained unclear. Therefore, it is possible that FH mutations predispose also for ovarian tumours but further studies are needed to verify this result. A novel variant form of the FH gene (FHv) was identified and characterized in more detail. FHv contains an alternative first exon (1b), which appeared to function as 5 UTR sequence. The translation of FHv is initiated in vitro from exons two and three. The localization of FHv is both cytosolic and nuclear, in contrast to the localization of FH in mitochondria. FHv is expressed at low levels in all human tissues. Interestingly, the expression was induced after heat shock treatment and in chronic hypoxia. Therefore, FHv might have a role e.g. in the adaptation to unfavourable growth conditions. However, this remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germline mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell cancer (HLRCC). FH is a nuclear encoded enzyme which functions in the Krebs tricarboxylic acid cycle, and homozygous mutation in FH lead to severe developmental defects. Both uterine and cutaneous leiomyomas are components of the HLRCC phenotype. Most of these tumours show loss of the wild-type allele and, also, the mutations reduce FH enzyme activity, which indicate that FH is a tumour suppressor gene. The renal cell cancers associated with HLRCC are of rare papillary type 2 histology. Other genes involved in the Krebs cycle, which are also implicated in neoplasia are 3 of the 4 subunits encoding succinate dehydrogenase (SDH); mutations in SHDB, SDHC, and SDHD predispose to paraganglioma and phaeochromocytoma. Although uterine leiomyomas (or fibroids) are very common, the estimations of affected women ranging from 25% to 77%, not much is known about their genetic background. Cytogenetic studies have revealed that rearrangements involving chromosomes 6, 7, 12 and 14 are most commonly seen in fibroids. Deletions on the long arm of chromosome 7 have been reported to be involved in about 17 to 34 % of leiomyomas and the small commonly deleted region on 7q22 suggests that there might be an underlying tumour suppressor gene in that region. The purpose of this study was to investigate the genetic mechanisms behind the development of tumours associated with HLRCC, both renal cell cancer and uterine fibroids. Firstly, a database search at the Finnish cancer registry was conducted in order to identify new families with early-onset RCC and to test if the family history was compatible with HLRCC. Secondly, sporadic uterine fibroids were tested for deletions on 7q in order to define the minimal deleted 7q-region, followed by mutation analysis of the candidate genes. Thirdly, oligonucleotide chips were utilised to study the global gene expression profiles of uterine fibroids in order to test whether 7q-deletions and FH mutations significantly affected fibroid biology. In the screen for early-onset RCC, 214 families were identified. Subsequently, the pedigrees were constructed and clinical data obtained. One of the index cases (RCC at the age of 28) had a mother who had been diagnosed with a heart tumour, which in further investigation turned out to be a paraganglioma. This lead to an alternative hypothesis that SDH, instead of FH, could be involved. SDHA, SDHB, SDHC and SDHD were sequenced from these individuals; a germline SDHB R27X mutation was detected with loss of the wild-type allele in both tumours. These results suggest that germline mutations in the SDHB gene predispose to early-onset RCC establishing a novel form of hereditary RCC. This has immediate clinical implications in the surveillance of patients suffering from early-onset RCC and phaeochromocytoma/paraganglioma. For the studies on sporadic uterine fibroids, a set of 166 fibroids from 51 individuals were collected. The 7q LOH mapping defined a commonly deleted region of about 3.2 mega bases in 11 of the 166 tumours. The deletion was consistent with previously reported allelotyping studies of leiomyomas and it therefore suggested the presence of a tumour suppressor gene in the deleted region. Furthermore, the high-resolution aCGH-chip analysis refined the deleted region to only 2.79Mb. When combined with previous data, the commonly deleted region was only 2.3Mb. The mutation screening of the known genes within the commonly deleted region did not reveal pathogenic mutations, however. The expression microarray analysis revealed that FH-deficient fibroids, both sporadic and familial, had their distinct gene expression profile as they formed their own group in the unsupervised clustering. On the other hand, the presence or absence of 7q-deletions did not significantly alter the global gene expression pattern of fibroids, suggesting that these two groups do not have different biological backgrounds. Multiple differentially expressed genes were identified between FH wild-type and FH-mutant fibroids, and the most significant increase was seen in the expression of carbohydrate metabolism-related and hypoxia inducible factor (HIF) target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviral gene therapy is an experimental approach to cancer refractory to standard cancer therapies. Adenoviruses can be utilized as vectors to deliver therapeutic transgenes into cancer cells, while gene therapy with oncolytic adenoviruses exploits the lytic potential of viruses to kill tumor cells. Although adenoviruses demonstrate several advantages over other vectors - such as the unparalleled transduction efficacy and natural tropism to a wide range of tissues - the gene transfer efficacy to cancer cells has been limited, consequently restricting the therapeutic effect. There are, however, several approaches to circumvent this problem. We utilized different modified adenoviruses to obtain information on adenovirus tropism towards non-small cell lung cancer (NSCLC) cells. To enhance therapeutic outcome, oncolytic adenoviruses were evaluated. Further, to enhance gene delivery to tumors, we used mesenchymal stem cells (MSCs) as carriers. To improve adenovirus specificity, we investigated whether widely used cyclooxygenase 2 (Cox-2) promoter is induced by adenovirus infection in nontarget cells and whether selectivity can be retained by the 3 untranslated region (UTR) AU-rich elements. In addition, we investigated whether switching adenovirus fiber can retain gene delivery in the presence of neutralizing antibodies. Our results show that adenoviruses, whose capsids were modified with arginine-glycine-aspartatic acid (RGD-4C), the serotype 3 knob, or polylysins displayed enhanced gene transfer into NSCLC cell lines and fresh clinical specimens from patients. The therapeutic efficacy was further improved by using respective oncolytic adenoviruses with isogenic 24bp deletion in the E1A gene. Cox-2 promoter was also shown to be induced in normal and tumor cells following adenovirus infection, but utilization of 3 UTR elements can increase the tumor specificity of the promoter. Further, the results suggested that use of MSCs could enhance the bioavailability and delivery of adenoviruses into human tumors, although cells had no tumor tropism per se. Finally, we demonstrated that changing adenovirus fiber can allow virus to escape from existing neutralizing antibodies when delivered systemically. In conclusion, these results reveal that adenovirus gene transfer and specificity can be increased by using modified adenoviruses and MSCs as carriers, and fiber modifications simultaneously decrease the effect of neutralizing antibodies. This promising data suggest that these approaches could translate into clinical testing in patients with NSCLC refractory to current modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poikkijuovaisen luuranko- ja sydänlihaksen supistumisyksikkö, sarkomeeri, koostuu tarkoin järjestyneistä aktiini- ja myosiinisäikeistä. Rakenne eroaa muista solutyypeistä, joissa aktiinisäikeistö muovautuu jatkuvasti ja sen järjestyminen säätelee solun muotoa, solujakautumista, soluliikettä ja solunsisäisten organellien kuljetusta. Myotilin, palladin ja myopalladin kuuluvat proteiiniperheeseen, jonka yhteispiirteenä ovat immunoglobuliinin kaltaiset (Igl) domeenit. Proteiinit liittyvät aktiinitukirankaan ja niiden arvellaan toimivan solutukirangan rakenne-elementteinä ja säätelijöinä. Myotilinia ja myopalladinia ilmennetään poikkijuovaisessa lihaksessa. Sen sijaan palladinin eri silmukointimuotoja tavataan monissa kudostyypeissä kuten hermostossa, ja eri muodoilla saattaa olla solutyypistä riippuvia tehtäviä. Poikkijuovaisessa lihaksessa kaikki perheen jäsenet sijaitsevat aktiinisäikeitä yhdistävässä Z-levyssä ja ne sitovat Z-levyn rakenneproteiinia, -aktiniinia. Myotilingeenin pistemutaatiot johtavat periytyviin lihastauteihin, kun taas palladinin mutaatioiden on kuvattu liittyvän periytyvään haimasyöpään ja lisääntyneeseen sydäninfarktin riskiin. Tässä tutkimuksessa selvitettin myotilinin ja pallainin toimintaa. Kokeissa löydettiin uusia palladinin 90-92kDa alatyyppiin sitoutuvia proteiineja. Yksi niistä on aktiinidynamiikkaa säätelevä profilin. Profilinilla on kahdenlaisia tehtäviä; se edesauttaa aktiinisäikeiden muodostumista, mutta se voi myös eristää yksittäisiä aktiinimolekyylejä ja edistää säikeiden hajoamista. Solutasolla palladinin ja profilinin sijainti on yhtenevä runsaasti aktiinia sisältävillä solujen reuna-alueilla. Palladinin ja profilinin sidos on heikko ja hyvin dynaaminen, joka sopii palladinin tehtävään aktiinisäideiden muodostumisen koordinoijana. Toinen palladinin sitoutumiskumppani on aktiinisäikeitä yhteensitova -aktiniini. -Aktiniini liittää solutukirangan solukalvon proteiineihin ja ankkuroi solunsisäisiä viestintämolekyylejä. Sitoutumista välittävä alue on hyvin samankaltainen palladinissa ja myotilinissa. Luurankolihaksen liiallinen toistuva venytys muuttaa Z-levyjen rakennetta ja muotoa. Prosessin aikana syntyy uusia aktiinifilamenttejä sisältäviä tiivistymiä ja lopulta uusia sarkomeereja. Löydöstemme perusteella myotilinin uudelleenjärjestyminen noudattaa aktiinin muutoksia. Tämä viittaa siihen, että myotilin liittää yhteen uudismuodostuvia aktiinisäikeitä ja vakauttaa niitä. Myotilin saattaa myös ankkuroida viesti- tai rakennemolekyylejä, joiden tehtävänä on edesauttaa Z-levyjen uudismuodostusta. Tulostemme perusteella arvelemme, että myotilin toimii Z-levyjen rakenteen vakaajana ja aktiinisäikeiden säätelijänä. Palladinin puute johtaa sikiöaikaiseen kuolemaan hiirillä, mutta myotilinin puutoksella ei ole samanlaisia vaikutuksia. Tuotettujen myotilin poistogeenisten hiirten todetiin syntyvän ja kehittyvän normaalisti eikä niillä esiintynyt rakenteellisia tai toiminnallisia häiriöitä. Toisaalta aiemmissa kokeissa, joissa hiirille on siirretty ihmisen lihastautia aikaansaava myotilingeeni, nähdään samankaltaisia kuin sairailla ihmisillä. Näin ollen muuntunut myotilin näyttä olevan lihaksen toiminnalle haitallisempi kuin myotilinin puute. Myotilinin ja palladinin yhteisvaikutusta selvittääksemme risteytimme myotilin poistegeenisen hiiren ja hiirilinjan, joka ilmentää puutteellisesti palladinin 200 kDa muotoa. Puutteellisesti 200 kDa palladinia ilmentävien hiirten sydänlihaksessa todettiin vähäisiä hienorakenteen muutoksia, mutta risteytetyillä hiirillä tavattiin rakenteellisia ja toiminnallisia muutoksia myös luurankolihaksessa. Tulosten perusteella voidaan todeta, että palladinin 200 kDa muoto säätelee sydänlihassolujen rakennetta. Luurankolihaksessa sen sijaan myotilinilla ja palladinilla näyttäisi olevan päällekkäisiä tehtäviä.