6 resultados para shell thickness
em Helda - Digital Repository of University of Helsinki
Resumo:
Yhteenveto: Järvijään paksuus ja volyymi Suomessa jaksolla 1961-90
Resumo:
The K-shell diagram (K alpha(1,2) and K beta(1,3)) and hypersatellite (HS) (K-h alpha(1,2)) spectra of Y, Zr, Mo, and Pd have been measured with high energy-resolution using photoexcitation by 90 keV synchrotron radiation. Comparison of the measured and ab initio calculated HS spectra demonstrates the importance of quantum electrodynamical (QED) effects for the HS spectra. Phenomenological fits of the measured spectra by Voigt functions yield accurate values for the shift of the HS from the diagram lines, the splitting of the HS lines, and their intensity ratio. Good agreement with theory was found for all quantities except for the intensity ratio, which is dominated by the intermediacy of the coupling of the angular momenta. The observed deviations imply that our current understanding of the variation of the coupling scheme from LS to jj across the periodic table may require some revision.
Resumo:
Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.