6 resultados para self assembled monolayers

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoclusters are objects made up of several to thousands of atoms and form a transitional state of matter between single atoms and bulk materials. Due to their large surface-to-volume ratio, nanoclusters exhibit exciting and yet poorly studied size dependent properties. When deposited directly on bare metal surfaces, the interaction of the cluster with the substrate leads to alteration of the cluster properties, making it less or even non-functional. Surfaces modified with self-assembled monolayers (SAMs) were shown to form an interesting alternative platform, because of the possibility to control wettability by decreasing the surface reactivity and to add functionalities to pre-formed nanoclusters. In this thesis, the underlying size effects and the influence of the nanocluster environment are investigated. The emphasis is on the structural and magnetic properties of nanoclusters and their interaction with thiol SAMs. We report, for the first time, a ferromagnetic-like spin-glass behaviour of uncapped nanosized Au islands tens of nanometres in size. The flattening kinetics of the nanocluster deposition on thiol SAMs are shown to be mediated mainly by the thiol terminal group, as well as the deposition energy and the particle size distribution. On the other hand, a new mechanism for the penetration of the deposited nanoclusters through the monolayers is presented, which is fundamentally different from those reported for atom deposition on alkanethiols. The impinging cluster is shown to compress the thiol layer against the Au surface and subsequently intercalate at the thiol-Au interface. The compressed thiols try then to straighten and push the cluster away from the surface. Depending on the cluster size, this restoring force may or may not enable a covalent cluster-surface bond formation, giving rise to various cluster-surface binding patterns. Compression and straightening of the thiol molecules pinpoint the elastic nature of the SAMs, which has been investigated in this thesis using nanoindentation. The nanoindenation method has been applied to SAMs of varied tail groups, giving insight into the mechanical properties of thiol modified metal surfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uusien polymeeripohjaisten teknologioiden ja materiaalien myötä räätälöityjen polymeerien tarve on kasvanut. Viime vuosituhannen lopussa kehitetyt kontrolloidut polymerointimenetelmät ovat avanneet uusia mahdollisuuksia paitsi monimutkaisten polymeerien synteesiin, myös itsejärjestyvyyteen perustuvien funktionaalisten nanorakenteiden suunnitteluun ja valmistukseen. Nämä voivat jäljitellä luonnossa esiintyviä rakenteita, joita muodostavat esimerkiksi lipidit ja proteiinit. Itsejärjestyvät molekyylit ovat usein amfifiilisiä eli ne koostuvat hydrofiilisistä ja hydrofobisista osista ja polymeereissä nämä osat voivat olla omina lohkoinaan, jolloin puhutaan amfifiilisistä lohko- tai blokkikopolymeereistä. Riippuen järjestyneiden rakenteiden koostumuksesta ja muodosta, amfifiilisiä blokkikopolymeerejä on tutkittu tai jo käytetty nanoteknologiassa, elastomeereissä, voiteluaineissa, pinta-aktiivisina aineina, lääkkeenannostelussa, maaleissa, sekä elektroniikka-, kosmetiikka- ja elintarviketeollisuudessa. Tavallisimmin käytetyt amfifiiliset blokkikopolymeerit ovat olleet lineaarisia, mutta viime aikoina tutkimus on suuntautunut kohti monimutkaisempia rakenteita. Tällaisia ovat esimerkiksi tähtipolymeerit. Tähtimäisissä polymeereissä miselleille tyypillinen ydin-kuori-rakenne säilyy hyvin alhaisissakin polymeerikonsentraatioissa, koska polymeeriketjut ovat kiinni toisissaan yhdessä pisteessä. Siten ne ovat erityisen kiinnostavia tutkimuskohteita erilaisten hydrofobisten orgaanisten yhdisteiden sitomiseksi ja vapauttamiseksi. Tässä työssä on tarkasteltu amfifiilisten tähtipolymeerien itsejärjestymistä vesiliuoksissa sekä kokeellisesti ja tietokonesimulaatioin. Työ koostuu kahdesta osasta: tähtipolymeerien synteesistä makrosyklisillä initiaattoreilla ja amfifiilisten tähtimäisten blokkikopolymeerien ominaisuuksien tutkimisesta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schiff bases and their transition metal complexes are of significant current interest even though they have been prepared for decades. They have been used in various applications such as catalysis, corrosion protection, and molecular sensors. In this study, N-aryl Schiff base ketimine ligands as well as numerous new, differently substituted salen and salophen-type ligands and their cobalt(II), copper(II), iron(II), manganese(II), and nickel(II) complexes were synthesised. New solid state structures of the above compounds and the dioxygen coordination properties of cobalt(II) complexes and catalytic properties of three synthesised binuclear complexes were examined. The prepared complexes were applied in the formation of self-assembled layers on a polycrystalline gold surface and liquid-graphite interface. The effect of metal ion and ligand structure on the as-formed patterns was studied. When studying gold surfaces, a unique thiol-assisted dissolution of elemental gold was observed and a new thin gold foil preparation method was introduced. In the summary, synthesis, structures, and properties of Schiff base ligands and their transition metal complexes are described in detail and the applications of these reviewed. Assemblies of other complexes on a liquid-graphite interface and on a gold surface are also presented, and the surface characterisation methods and surfaces employed are described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrophobins are a group of particularly surface active proteins. The surface activity is demonstrated in the ready adsorption of hydrophobins to hydrophobic/hydrophilic interfaces such as the air/water interface. Adsorbed hydrophobins self-assemble into ordered films, lower the surface tension of water, and stabilize air bubbles and foams. Hydrophobin proteins originate from filamentous fungi. In the fungi the adsorbed hydrophobin films enable the growth of fungal aerial structures, form protective coatings and mediate the attachment of fungi to solid surfaces. This thesis focuses on hydrophobins HFBI, HFBII, and HFBIII from a rot fungus Trichoderma reesei. The self-assembled hydrophobin films were studied both at the air/water interface and on a solid substrate. In particular, using grazing-incidence x-ray diffraction and reflectivity, it was possible to characterize the hydrophobin films directly at the air/water interface. The in situ experiments yielded information on the arrangement of the protein molecules in the films. All the T. reesei hydrophobins were shown to self-assemble into highly crystalline, hexagonally ordered rafts. The thicknesses of these two-dimensional protein crystals were below 30 Å. Similar films were also obtained on silicon substrates. The adsorption of the proteins is likely to be driven by the hydrophobic effect, but the self-assembly into ordered films involves also specific protein-protein interactions. The protein-protein interactions lead to differences in the arrangement of the molecules in the HFBI, HFBII, and HFBIII protein films, as seen in the grazing-incidence x-ray diffraction data. The protein-protein interactions were further probed in solution using small-angle x-ray scattering. Both HFBI and HFBII were shown to form mainly tetramers in aqueous solution. By modifying the solution conditions and thereby the interactions, it was shown that the association was due to the hydrophobic effect. The stable tetrameric assemblies could tolerate heating and changes in pH. The stability of the structure facilitates the persistence of these secreted proteins in the soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is a method to deposit thin films from gaseous precursors to the substrate layer-by-layer so that the film thickness can be tailored with atomic layer accuracy. Film tailoring is even further emphasized with selective-area ALD which enables the film growth to be controlled also on the substrate surface. Selective-area ALD allows the decrease of a process steps in preparing thin film devices. This can be of a great technological importance when the ALD films become into wider use in different applications. Selective-area ALD can be achieved by passivation or activation of a surface. In this work ALD growth was prevented by octadecyltrimethoxysilane, octadecyltrichlorosilane and 1-dodecanethiol SAMs, and by PMMA (polymethyl methacrylate) and PVP (poly(vinyl pyrrolidone) polymer films. SAMs were prepared from vapor phase and by microcontact printing, and polymer films were spin coated. Microcontact printing created patterned SAMs at once. The SAMs prepared from vapor phase and the polymer mask layers were patterned by UV lithography or lift-off process so that after preparation of a continuous mask layer selected areas of them were removed. On these areas the ALD film was deposited selectively. SAMs and polymer films prevented the growth in several ALD processes such as iridium, ruthenium, platinum, TiO2 and polyimide so that the ALD films did grow only on areas without SAM or polymer mask layer. PMMA and PVP films also protected the surface against Al2O3 and ZrO2 growth. Activation of the surface for ALD of ruthenium was achieved by preparing a RuOX layer by microcontact printing. At low temperatures the RuCp2-O2 process nucleated only on this oxidative activation layer but not on bare silicon.