14 resultados para second-order models
em Helda - Digital Repository of University of Helsinki
Resumo:
The use of remote sensing imagery as auxiliary data in forest inventory is based on the correlation between features extracted from the images and the ground truth. The bidirectional reflectance and radial displacement cause variation in image features located in different segments of the image but forest characteristics remaining the same. The variation has so far been diminished by different radiometric corrections. In this study the use of sun azimuth based converted image co-ordinates was examined to supplement auxiliary data extracted from digitised aerial photographs. The method was considered as an alternative for radiometric corrections. Additionally, the usefulness of multi-image interpretation of digitised aerial photographs in regression estimation of forest characteristics was studied. The state owned study area located in Leivonmäki, Central Finland and the study material consisted of five digitised and ortho-rectified colour-infrared (CIR) aerial photographs and field measurements of 388 plots, out of which 194 were relascope (Bitterlich) plots and 194 were concentric circular plots. Both the image data and the field measurements were from the year 1999. When examining the effect of the location of the image point on pixel values and texture features of Finnish forest plots in digitised CIR photographs the clearest differences were found between front-and back-lighted image halves. Inside the image half the differences between different blocks were clearly bigger on the front-lighted half than on the back-lighted half. The strength of the phenomenon varied by forest category. The differences between pixel values extracted from different image blocks were greatest in developed and mature stands and smallest in young stands. The differences between texture features were greatest in developing stands and smallest in young and mature stands. The logarithm of timber volume per hectare and the angular transformation of the proportion of broadleaved trees of the total volume were used as dependent variables in regression models. Five different converted image co-ordinates based trend surfaces were used in models in order to diminish the effect of the bidirectional reflectance. The reference model of total volume, in which the location of the image point had been ignored, resulted in RMSE of 1,268 calculated from test material. The best of the trend surfaces was the complete third order surface, which resulted in RMSE of 1,107. The reference model of the proportion of broadleaved trees resulted in RMSE of 0,4292 and the second order trend surface was the best, resulting in RMSE of 0,4270. The trend surface method is applicable, but it has to be applied by forest category and by variable. The usefulness of multi-image interpretation of digitised aerial photographs was studied by building comparable regression models using either the front-lighted image features, back-lighted image features or both. The two-image model turned out to be slightly better than the one-image models in total volume estimation. The best one-image model resulted in RMSE of 1,098 and the two-image model resulted in RMSE of 1,090. The homologous features did not improve the models of the proportion of broadleaved trees. The overall result gives motivation for further research of multi-image interpretation. The focus may be improving regression estimation and feature selection or examination of stratification used in two-phase sampling inventory techniques. Keywords: forest inventory, digitised aerial photograph, bidirectional reflectance, converted image coordinates, regression estimation, multi-image interpretation, pixel value, texture, trend surface
Resumo:
This thesis is a study of a rather new logic called dependence logic and its closure under classical negation, team logic. In this thesis, dependence logic is investigated from several aspects. Some rules are presented for quantifier swapping in dependence logic and team logic. Such rules are among the basic tools one must be familiar with in order to gain the required intuition for using the logic for practical purposes. The thesis compares Ehrenfeucht-Fraïssé (EF) games of first order logic and dependence logic and defines a third EF game that characterises a mixed case where first order formulas are measured in the formula rank of dependence logic. The thesis contains detailed proofs of several translations between dependence logic, team logic, second order logic and its existential fragment. Translations are useful for showing relationships between the expressive powers of logics. Also, by inspecting the form of the translated formulas, one can see how an aspect of one logic can be expressed in the other logic. The thesis makes preliminary investigations into proof theory of dependence logic. Attempts focus on finding a complete proof system for a modest yet nontrivial fragment of dependence logic. A key problem is identified and addressed in adapting a known proof system of classical propositional logic to become a proof system for the fragment, namely that the rule of contraction is needed but is unsound in its unrestricted form. A proof system is suggested for the fragment and its completeness conjectured. Finally, the thesis investigates the very foundation of dependence logic. An alternative semantics called 1-semantics is suggested for the syntax of dependence logic. There are several key differences between 1-semantics and other semantics of dependence logic. 1-semantics is derived from first order semantics by a natural type shift. Therefore 1-semantics reflects an established semantics in a coherent manner. Negation in 1-semantics is a semantic operation and satisfies the law of excluded middle. A translation is provided from unrestricted formulas of existential second order logic into 1-semantics. Also game theoretic semantics are considerd in the light of 1-semantics.
Resumo:
National identity signifies and makes state s defence- and foreign policy behaviour meaningful. National consciousness is narrated into existence by narratives upon one s own exceptionalism and Otherness of the other nations. While national identity may be understood merely as a self-image of a nation, defence identity refers to the borders of Otherness and issues that have been considered as worth defending for. As national identities and all the world order models are human constructions, they may be changed by the human efforts as well; states and nations may deliberately promote communitarian or even cosmopolitan equality and tolerance without borders of Otherness. The main research question of the thesis is: How does Poland constitute herself as a nation and a state agent in the current world order and to what extent have contextual foreign and defence policy interactions changed the Polish defence identity during the post-Cold War era? The main empirical argument of the thesis is: Poland is a narrated idea of a Christian Catholic nation-state, which the Polish State, the Catholic Church of Poland, the Armed Forces of Poland as well as a majority of the Polish nation share. Polish defence identity has been almost impenetrable to contextual foreign and defence policy interactions during the post-Cold War era. While Christian religious ontology binds corporate Poland together, allowing her to survive any number of military and political catastrophes, it simultaneously brings her closer to the USA, raises tensions in the infidel EU-context, and restrains corporate Poland s pursuit of communitarian, or even cosmopolitan, global equality and tolerance. It is not the case that corporate Poland s foreign and defence policy orientation is instinctively Atlanticist by nature, as has been argued. Rather, it has been the State s rational project to overcome a habituated and reified fear of becoming geopolitically sandwiched between Russian and German Others by leaning on the USA; among the Polish nation, support for the USA has been declining since 2004. It is not corporate Poland either that has turned into a constructive European , as has been argued, but rather the Polish nation that has, at least partly, managed to emancipate itself from its habituation to a betrayal by Europe narrative, since it favours the EU as much as it favours NATO. It seems that in the Polish case a truly common European CFSP vis-à-vis Russia may offer a solution that will emancipate the Polish State from its habituated EU-sceptic role identity and corporate Poland from its narrated borders of Otherness towards Russia and Germany, but even then one cannot be sure whether any other perspective than the Polish one on a common stand towards Russia would satisfy the Poles themselves.
Resumo:
Acceleration of the universe has been established but not explained. During the past few years precise cosmological experiments have confirmed the standard big bang scenario of a flat universe undergoing an inflationary expansion in its earliest stages, where the perturbations are generated that eventually form into galaxies and other structure in matter, most of which is non-baryonic dark matter. Curiously, the universe has presently entered into another period of acceleration. Such a result is inferred from observations of extra-galactic supernovae and is independently supported by the cosmic microwave background radiation and large scale structure data. It seems there is a positive cosmological constant speeding up the universal expansion of space. Then the vacuum energy density the constant describes should be about a dozen times the present energy density in visible matter, but particle physics scales are enormously larger than that. This is the cosmological constant problem, perhaps the greatest mystery of contemporary cosmology. In this thesis we will explore alternative agents of the acceleration. Generically, such are called dark energy. If some symmetry turns off vacuum energy, its value is not a problem but one needs some dark energy. Such could be a scalar field dynamically evolving in its potential, or some other exotic constituent exhibiting negative pressure. Another option is to assume that gravity at cosmological scales is not well described by general relativity. In a modified theory of gravity one might find the expansion rate increasing in a universe filled by just dark matter and baryons. Such possibilities are taken here under investigation. The main goal is to uncover observational consequences of different models of dark energy, the emphasis being on their implications for the formation of large-scale structure of the universe. Possible properties of dark energy are investigated using phenomenological paramaterizations, but several specific models are also considered in detail. Difficulties in unifying dark matter and dark energy into a single concept are pointed out. Considerable attention is on modifications of gravity resulting in second order field equations. It is shown that in a general class of such models the viable ones represent effectively the cosmological constant, while from another class one might find interesting modifications of the standard cosmological scenario yet allowed by observations. The thesis consists of seven research papers preceded by an introductory discussion.
Resumo:
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion.
Resumo:
This dissertation investigates changes in bank work and the experience of impossibility attached to these by workers at the local level from the viewpoint of work-related well-being and collective learning. A special challenge in my work is to conceptualize the experience of impossibility as related to change, and as a starting point and tool for development work. The subject of the dissertation, solving the impossible as a collective learning process, came up as a central theme in an earlier project: Work Units between the Old and the New (1997 – 1999). Its aim was to investigate how change is constructed as a long-term process, starting from the planning of the change until its final realization in everyday banking work. I studied changes taking place in the former Postipankki (Postal Bank), later called Leonia. The three-year study involved the Branch Office of Martinlaakso, and was conducted from the perspective of well-being in a change process. The sense of impossibility involved in changes turned out to be one of the most crucial factors impairing the sense of well-being. The work community that was the target of my study did not have the available tools to construct the change locally, or to deal with the change-related impossibility by solving it through a mutual process among themselves. During the last year of the project, I carried out an intervention for development in the Branch Office, as collaboration between the researchers and the workers. The purpose of the intervention was to resolve such perceived change-related impossibility as experienced repeatedly and considered by the work community as relevant to work-related well-being. The documentation of the intervention – audio records from development sessions, written assignments by workers and assessment or evaluation interviews – constitute the essential data for my dissertation. The earlier data, collected and analysed during the first two years, provides a historical perspective on the process, all the way from construction of the impossibility towards resolving and transcending it. The aim of my dissertation is to understand the progress of developmental intervention as a shared, possibly expansive learning process within a work community and thus to provide tools for perceiving and constructing local change. I chose the change-related impossibility as a starting point for development work in the work community and as a target of conceptualization. This, I feel, is the most important contribution of my dissertation. While the intervention was in progress, the concept of impossibility started emerging as a stimulating tool for development work. An understanding of such a process can be applied to development work outside banking work as well. According to my results, it is pivotal that a concept stimulating development is strongly connected with everyday experiences of and speech about changes in work activity, as well as with the theoretical framework of work development. During this process, development work on a local level became of utmost interest as a case study for managing change. Theoretically, this was conceptualized as so-called second-order work and this concept accompanies us all the way through the research process. Learning second-order work and constructing tools based on this work have proved crucial for promoting well-being in the change circumstances in a local work unit. The lack of second-order work has led to non-well-being and inability to transcend the change-related sense of impossibility in the work community. Solving the impossible, either individually or situationally, did not orient the workers towards solving problems of impossibility together as a work community. Because the experience of the impossibility and coming to terms with transcending it are the starting point and the target of conceptualization in this dissertation, the research provides a fresh viewpoint on the theoretical framework of change and developmental work. My dissertation can facilitate construction of local changes necessitated by the recent financial crisis, and thus promote fluency and well-being in work units. It can also support change-related well-being in other areas of working life.
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.
Resumo:
This thesis consists of four research papers and an introduction providing some background. The structure in the universe is generally considered to originate from quantum fluctuations in the very early universe. The standard lore of cosmology states that the primordial perturbations are almost scale-invariant, adiabatic, and Gaussian. A snapshot of the structure from the time when the universe became transparent can be seen in the cosmic microwave background (CMB). For a long time mainly the power spectrum of the CMB temperature fluctuations has been used to obtain observational constraints, especially on deviations from scale-invariance and pure adiabacity. Non-Gaussian perturbations provide a novel and very promising way to test theoretical predictions. They probe beyond the power spectrum, or two point correlator, since non-Gaussianity involves higher order statistics. The thesis concentrates on the non-Gaussian perturbations arising in several situations involving two scalar fields, namely, hybrid inflation and various forms of preheating. First we go through some basic concepts -- such as the cosmological inflation, reheating and preheating, and the role of scalar fields during inflation -- which are necessary for the understanding of the research papers. We also review the standard linear cosmological perturbation theory. The second order perturbation theory formalism for two scalar fields is developed. We explain what is meant by non-Gaussian perturbations, and discuss some difficulties in parametrisation and observation. In particular, we concentrate on the nonlinearity parameter. The prospects of observing non-Gaussianity are briefly discussed. We apply the formalism and calculate the evolution of the second order curvature perturbation during hybrid inflation. We estimate the amount of non-Gaussianity in the model and find that there is a possibility for an observational effect. The non-Gaussianity arising in preheating is also studied. We find that the level produced by the simplest model of instant preheating is insignificant, whereas standard preheating with parametric resonance as well as tachyonic preheating are prone to easily saturate and even exceed the observational limits. We also mention other approaches to the study of primordial non-Gaussianities, which differ from the perturbation theory method chosen in the thesis work.
Resumo:
FTIR-spektroskopia (Fourier-muunnosinfrapunaspektroskopia) on nopea analyysimenetelmä. Fourier-laitteissa interferometrin käyttäminen mahdollistaa koko infrapunataajuusalueen mittaamisen muutamassa sekunnissa. ATR-liitännäisellä varustetun FTIR-spektrometrin käyttö ei edellytä juuri näytteen valmistusta ja siksi menetelmä on käytössä myös helppo. ATR-liitännäinen mahdollistaa myös monien erilaisten näytteiden analysoinnin. Infrapunaspektrin mittaaminen onnistuu myös sellaisista näytteistä, joille perinteisiä näytteenvalmistusmenetelmiä ei voida käyttää. FTIR-spektroskopian avulla saatu tieto yhdistetään usein tilastollisiin monimuuttuja-analyyseihin. Klusterianalyysin avulla voidaan spektreistä saatu tieto ryhmitellä samanlaisuuteen perustuen. Hierarkkisessa klusterianalyysissa objektien välinen samanlaisuus määritetään laskemalla niiden välinen etäisyys. Pääkomponenttianalyysin avulla vähennetään datan ulotteisuutta ja luodaan uusia korreloimattomia pääkomponentteja. Pääkomponenttien tulee säilyttää mahdollisimman suuri määrä alkuperäisen datan variaatiosta. FTIR-spektroskopian ja monimuuttujamenetelmien sovellusmahdollisuuksia on tutkittu paljon. Elintarviketeollisuudessa sen soveltuvuutta esimerkiksi laadun valvontaan on tutkittu. Menetelmää on käytetty myös haihtuvien öljyjen kemiallisten koostumusten tunnistukseen sekä öljykasvien kemotyyppien havaitsemiseen. Tässä tutkimuksessa arvioitiin menetelmän käyttöä suoputken uutenäytteiden luokittelussa. Tutkimuksessa suoputken eri kasvinosien uutenäytteiden FTIR-spektrejä vertailtiin valikoiduista puhdasaineista mitattuihin FTIR-spektreihin. Puhdasaineiden FTIR-spektreistä tunnistettiin niiden tyypilliset absorptiovyöhykkeet. Furanokumariinien spektrien intensiivisten vyöhykkeiden aaltolukualueet valittiin monimuuttuja-analyyseihin. Monimuuttuja-analyysit tehtiin myös IR-spektrin sormenjälkialueelta aaltolukualueelta 1785-725 cm-1. Uutenäytteitä pyrittiin luokittelemaan niiden keräyspaikan ja kumariinipitoisuuden mukaan. Keräyspaikan mukaan ryhmittymistä oli havaittavissa, mikä selittyi vyöhykkeiden aaltolukualueiden mukaan tehdyissä analyyseissa pääosin kumariinipitoisuuksilla. Näissä analyyseissa uutenäytteet pääosin ryhmittyivät ja erottuivat kokonaiskumariinipitoisuuksien mukaan. Myös aaltolukualueen 1785-725 cm-1 analyyseissa havaittiin keräyspaikan mukaan ryhmittymistä, mitä kumariinipitoisuudet eivät kuitenkaan selittäneet. Näihin ryhmittymisiin vaikuttivat mahdollisesti muiden yhdisteiden samanlaiset pitoisuudet näytteissä. Analyyseissa käytettiin myös muita aaltolukualueita, mutta tulokset eivät juuri poikenneet aiemmista. 2. kertaluvun derivaattaspektrien monimuuttuja-analyysit sormenjälkialueelta eivät myöskään muuttaneet tuloksia havaittavasti. Jatkotutkimuksissa nyt käytettyä menetelmää on mahdollista edelleen kehittää esimerkiksi tutkimalla monimuuttuja-analyyseissa 2. kertaluvun derivaattaspektreistä suppeampia, tarkkaan valittuja aaltolukualueita.
Resumo:
The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.
Resumo:
The object of this work is Hegel's Logic, which comprises the first third of his philosophical System that also includes the Philosophy of Nature and the Philosophy of Spirit. The work is divided into two parts, where the first part investigates Hegel s Logic in itself or without an explicit reference to rest of Hegel's System. It is argued in the first part that Hegel's Logic contains a methodology for constructing examples of basic ontological categories. The starting point on which this construction is based is a structure Hegel calls Nothing, which I argue to be identical with an empty situation, that is, a situation with no objects in it. Examples of further categories are constructed, firstly, by making previous structures objects of new situations. This rule makes it possible for Hegel to introduce examples of ontological structures that contain objects as constituents. Secondly, Hegel takes also the very constructions he uses as constituents of further structures: thus, he is able to exemplify ontological categories involving causal relations. The final result of Hegel's Logic should then be a model of Hegel s Logic itself, or at least of its basic methods. The second part of the work focuses on the relation of Hegel's Logic to the other parts of Hegel's System. My interpretation tries to avoid, firstly, the extreme of taking Hegel's System as a grand metaphysical attempt to deduce what exists through abstract thinking, and secondly, the extreme of seeing Hegel's System as mere diluted Kantianism or a second-order investigation of theories concerning objects instead of actual objects. I suggest a third manner of reading Hegel's System, based on extending the constructivism of Hegel's Logic to the whole of his philosophical System. According to this interpretation, transitions between parts of Hegel's System should not be understood as proofs of any sort, but as constructions of one structure or its model from another structure. Hence, these transitions involve at least, and especially within the Philosophy of Nature, modelling of one type of object or phenomenon through characteristics of an object or phenomenon of another type, and in the best case, and especially within the Philosophy of Spirit, transformations of an object or phenomenon of one type into an object or phenomenon of another type. Thus, the transitions and descriptions within Hegel's System concern actual objects and not mere theories, but they still involve no fallacious deductions.