3 resultados para resin-based composite

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the feasibility of pit and fissure sealants and the effectiveness of the two sealant methods applied in every-day practice in public dental health care in Finland. Two sealant methods were evaluated according to their effectiveness in preventing dentin caries and sealant retention. Application time with these sealant methods was compared. The survival rate of sealed first and second molars was followed for nine and 13 year periods, respectively. Caries risk evaluation and observed increased caries risk were the basis for considering sealant application. A questionnaire, sent to all public dental health centers in Finland, monitored the attitudes of the dental profession towards sealant application and explored the current policies used as well as changes noted in the sealant application protocol. DMFT (Decayed, Missing or Filled Teeth) index values collected from the health centers were evaluated. The difference in caries rate between two methods investigated was highly significant. When compared to the glass ionomer sealant method (GIC), the effectiveness of the resin-based method (RB) in preventing dentin caries was 74% and the rate difference 3%. The relative risk for RB-sealed surfaces vs. GIC-sealed surfaces of having detectable dentin caries was 0.3 (95% CI 0.12, 0.57). The retention rate of sealants was higher with RB than GIC (P<0.001). Application of RB sealant material was less time-consuming than application of GIC sealant. Occlusal dentin caries lesions were found in 4% and proximal caries in less than 2% of sealed teeth. The majority of respondents reported application of sealants on a systematic basis along with caries-risk evaluation. Those health centers sealing over suspected or detected enamel caries had lower average DMFT index values (1.0) when compared to DMFT values (1.2) of health centers applying sealants by alternative criteria. It is concluded that the RB sealant method is more effective than the GIC sealant method in preventing dentin caries. Sealant maintenance may increase the costs of a sealant program. Occlusal caries management may be improved if the applied sealant policies are changed towards an interceptive approach i.e. applying the sealants over detected or suspected enamel caries lesions instead of sealing sound teeth in a preventive manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.