40 resultados para realistic neural modeling

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many species inhabit fragmented landscapes, resulting either from anthropogenic or from natural processes. The ecological and evolutionary dynamics of spatially structured populations are affected by a complex interplay between endogenous and exogenous factors. The metapopulation approach, simplifying the landscape to a discrete set of patches of breeding habitat surrounded by unsuitable matrix, has become a widely applied paradigm for the study of species inhabiting highly fragmented landscapes. In this thesis, I focus on the construction of biologically realistic models and their parameterization with empirical data, with the general objective of understanding how the interactions between individuals and their spatially structured environment affect ecological and evolutionary processes in fragmented landscapes. I study two hierarchically structured model systems, which are the Glanville fritillary butterfly in the Åland Islands, and a system of two interacting aphid species in the Tvärminne archipelago, both being located in South-Western Finland. The interesting and challenging feature of both study systems is that the population dynamics occur over multiple spatial scales that are linked by various processes. My main emphasis is in the development of mathematical and statistical methodologies. For the Glanville fritillary case study, I first build a Bayesian framework for the estimation of death rates and capture probabilities from mark-recapture data, with the novelty of accounting for variation among individuals in capture probabilities and survival. I then characterize the dispersal phase of the butterflies by deriving a mathematical approximation of a diffusion-based movement model applied to a network of patches. I use the movement model as a building block to construct an individual-based evolutionary model for the Glanville fritillary butterfly metapopulation. I parameterize the evolutionary model using a pattern-oriented approach, and use it to study how the landscape structure affects the evolution of dispersal. For the aphid case study, I develop a Bayesian model of hierarchical multi-scale metapopulation dynamics, where the observed extinction and colonization rates are decomposed into intrinsic rates operating specifically at each spatial scale. In summary, I show how analytical approaches, hierarchical Bayesian methods and individual-based simulations can be used individually or in combination to tackle complex problems from many different viewpoints. In particular, hierarchical Bayesian methods provide a useful tool for decomposing ecological complexity into more tractable components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with theoretical modeling of the electrodynamics of auroral ionospheres. In the five research articles forming the main part of the thesis we have concentrated on two main themes: Development of new data-analysis techniques and study of inductive phenomena in the ionospheric electrodynamics. The introductory part of the thesis provides a background for these new results and places them in the wider context of ionospheric research. In this thesis we have developed a new tool (called 1D SECS) for analysing ground based magnetic measurements from a 1-dimensional magnetometer chain (usually aligned in the North-South direction) and a new method for obtaining ionospheric electric field from combined ground based magnetic measurements and estimated ionospheric electric conductance. Both these methods are based on earlier work, but contain important new features: 1D SECS respects the spherical geometry of large scale ionospheric electrojet systems and due to an innovative way of implementing boundary conditions the new method for obtaining electric fields can be applied also at local scale studies. These new calculation methods have been tested using both simulated and real data. The tests indicate that the new methods are more reliable than the previous techniques. Inductive phenomena are intimately related to temporal changes in electric currents. As the large scale ionospheric current systems change relatively slowly, in time scales of several minutes or hours, inductive effects are usually assumed to be negligible. However, during the past ten years, it has been realised that induction can play an important part in some ionospheric phenomena. In this thesis we have studied the role of inductive electric fields and currents in ionospheric electrodynamics. We have formulated the induction problem so that only ionospheric electric parameters are used in the calculations. This is in contrast to previous studies, which require knowledge of the magnetospheric-ionosphere coupling. We have applied our technique to several realistic models of typical auroral phenomena. The results indicate that inductive electric fields and currents are locally important during the most dynamical phenomena (like the westward travelling surge, WTS). In these situations induction may locally contribute up to 20-30% of the total ionospheric electric field and currents. Inductive phenomena do also change the field-aligned currents flowing between the ionosphere and magnetosphere, thus modifying the coupling between the two regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis aims to link the biolinguistic research program and the results of studies in comceptual combination from cognitive psychology. The thesis derives a theory of syntactic structure of noun and adjectival compounds from the Empty Lexicon Hypothesis. Two compound-forming operations are described: root-compounding and word-compounding. The aptness of theory is tested with finnish and greek compounds. From the syntactic theory semantic requirements for conceptual system are derived, especially requirements for handling morphosyntactic features. These requirements are compared to three formidable theories of conceptual combination: relation theory CARIN, Dual-Process theory and C3-theory. The claims of explanatory power of relational distributions of modifier in CARIN-theory ared discarded, as the method for sampling and building relational distributions is not reliable and the algorithmic instantiation of theory does not compute what it claims to compute. From relational theory there still remains results supporting existence of 'easy' relations for certain concepts. Dual-Process theory is found to provide results that cannot in theory be affected by linguistic system, but the basic idea of property compounds is kept. C3-theory is found to be not computationally realistic, but the basic results of diagnosticity and local properties (domains) of conceptual system are solid. The three conceptual combination models are rethought as a problem of finding the shortest route between the two concepts. The new basis for modeling is suggested to be bare conceptual landscape with morphosyntactiic or semantic features working as guidance and structural features of landscape basically unknown, but such as they react to features from linguistic system. Minimalistic principles to conceptual modeling are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem cell characteristics affected by oncogenic pathways and in a human motoneuron disease Stem cells provide the self-renewing cell pool for developing or regenerating organs. The mechanisms underlying the decisions of a stem or progenitor cell to either self-renew and maintain multipotentiality or alternatively to differentiate are incompletely understood. In this thesis work, I have approached this question by investigating the role of the proto-oncogene Myc in the regulatory functions of neural progenitor cell (NPC) self-renewal, proliferation and differentiation. By using a retroviral transduction technique to create overexpression models in embryonic NPCs cultured as neurospheres, I show that activated levels of Myc increase NPC self-renewal. Furthermore, several mechanisms that regulate the activity of Myc were identified. Myc induced self-renewal is signalled through binding to the transcription factor Miz-1 as shown by the inhibited capacity of a Myc mutant (MycV394D), deficient in binding to Miz-1, to increase self-renewal in NPCs. Furthermore, overexpression of the newly identified proto-oncogene CIP2A recapitulates the effects of Myc overexpression in NPCs. Also the expression levels and in vivo expression patterns of Myc and CIP2A were linked together. CIP2A stabilizes Myc protein levels in several cancer types by inhibiting its degradation and our results suggest the same function for CIP2A in NPCs. Our results also support the conception of self-renewal and proliferation being two separately regulated cellular functions. Finally, I suggest that Myc regulates NPC self-renewal by influencing the way stem and progenitor cells react to the environmental cues that normally dictate the cellular identity of tissues containing self-renewing cells. Neurosphere cultures were also utilised in order to characterise functional defects in a human disease. Neural stem cell cultures obtained post-mortem from foetuses of lethal congenital contracture syndrome (LCCS) were used to reveal possible cell autonomous differentiation defects of patient NPCs. However, LCCS derived NPCs were able to differentiate normally in vitro although several transcriptional differences were identified by using microarray analysis. Proliferation rate of the patient NPCs was also increased as compared to NPCs of age-matched control foetuses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advancements in the analysis techniques have led to a rapid accumulation of biological data in databases. Such data often are in the form of sequences of observations, examples including DNA sequences and amino acid sequences of proteins. The scale and quality of the data give promises of answering various biologically relevant questions in more detail than what has been possible before. For example, one may wish to identify areas in an amino acid sequence, which are important for the function of the corresponding protein, or investigate how characteristics on the level of DNA sequence affect the adaptation of a bacterial species to its environment. Many of the interesting questions are intimately associated with the understanding of the evolutionary relationships among the items under consideration. The aim of this work is to develop novel statistical models and computational techniques to meet with the challenge of deriving meaning from the increasing amounts of data. Our main concern is on modeling the evolutionary relationships based on the observed molecular data. We operate within a Bayesian statistical framework, which allows a probabilistic quantification of the uncertainties related to a particular solution. As the basis of our modeling approach we utilize a partition model, which is used to describe the structure of data by appropriately dividing the data items into clusters of related items. Generalizations and modifications of the partition model are developed and applied to various problems. Large-scale data sets provide also a computational challenge. The models used to describe the data must be realistic enough to capture the essential features of the current modeling task but, at the same time, simple enough to make it possible to carry out the inference in practice. The partition model fulfills these two requirements. The problem-specific features can be taken into account by modifying the prior probability distributions of the model parameters. The computational efficiency stems from the ability to integrate out the parameters of the partition model analytically, which enables the use of efficient stochastic search algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reuse of existing carefully designed and tested software improves the quality of new software systems and reduces their development costs. Object-oriented frameworks provide an established means for software reuse on the levels of both architectural design and concrete implementation. Unfortunately, due to frame-works complexity that typically results from their flexibility and overall abstract nature, there are severe problems in using frameworks. Patterns are generally accepted as a convenient way of documenting frameworks and their reuse interfaces. In this thesis it is argued, however, that mere static documentation is not enough to solve the problems related to framework usage. Instead, proper interactive assistance tools are needed in order to enable system-atic framework-based software production. This thesis shows how patterns that document a framework s reuse interface can be represented as dependency graphs, and how dynamic lists of programming tasks can be generated from those graphs to assist the process of using a framework to build an application. This approach to framework specialization combines the ideas of framework cookbooks and task-oriented user interfaces. Tasks provide assistance in (1) cre-ating new code that complies with the framework reuse interface specification, (2) assuring the consistency between existing code and the specification, and (3) adjusting existing code to meet the terms of the specification. Besides illustrating how task-orientation can be applied in the context of using frameworks, this thesis describes a systematic methodology for modeling any framework reuse interface in terms of software patterns based on dependency graphs. The methodology shows how framework-specific reuse interface specifi-cations can be derived from a library of existing reusable pattern hierarchies. Since the methodology focuses on reusing patterns, it also alleviates the recog-nized problem of framework reuse interface specification becoming complicated and unmanageable for frameworks of realistic size. The ideas and methods proposed in this thesis have been tested through imple-menting a framework specialization tool called JavaFrames. JavaFrames uses role-based patterns that specify a reuse interface of a framework to guide frame-work specialization in a task-oriented manner. This thesis reports the results of cases studies in which JavaFrames and the hierarchical framework reuse inter-face modeling methodology were applied to the Struts web application frame-work and the JHotDraw drawing editor framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In visual object detection and recognition, classifiers have two interesting characteristics: accuracy and speed. Accuracy depends on the complexity of the image features and classifier decision surfaces. Speed depends on the hardware and the computational effort required to use the features and decision surfaces. When attempts to increase accuracy lead to increases in complexity and effort, it is necessary to ask how much are we willing to pay for increased accuracy. For example, if increased computational effort implies quickly diminishing returns in accuracy, then those designing inexpensive surveillance applications cannot aim for maximum accuracy at any cost. It becomes necessary to find trade-offs between accuracy and effort. We study efficient classification of images depicting real-world objects and scenes. Classification is efficient when a classifier can be controlled so that the desired trade-off between accuracy and effort (speed) is achieved and unnecessary computations are avoided on a per input basis. A framework is proposed for understanding and modeling efficient classification of images. Classification is modeled as a tree-like process. In designing the framework, it is important to recognize what is essential and to avoid structures that are narrow in applicability. Earlier frameworks are lacking in this regard. The overall contribution is two-fold. First, the framework is presented, subjected to experiments, and shown to be satisfactory. Second, certain unconventional approaches are experimented with. This allows the separation of the essential from the conventional. To determine if the framework is satisfactory, three categories of questions are identified: trade-off optimization, classifier tree organization, and rules for delegation and confidence modeling. Questions and problems related to each category are addressed and empirical results are presented. For example, related to trade-off optimization, we address the problem of computational bottlenecks that limit the range of trade-offs. We also ask if accuracy versus effort trade-offs can be controlled after training. For another example, regarding classifier tree organization, we first consider the task of organizing a tree in a problem-specific manner. We then ask if problem-specific organization is necessary.