2 resultados para power cycle prediction
em Helda - Digital Repository of University of Helsinki
Resumo:
Acute renal failure (ARF) is a clinical syndrome characterized by rapidly decreasing glomerular filtration rate, which results in disturbances in electrolyte- and acid-base homeostasis, derangement of extracellular fluid volume, and retention of nitrogenous waste products, and is often associated with decreased urine output. ARF affects about 5-25% of patients admitted to intensive care units (ICUs), and is linked to high mortality and morbidity rates. In this thesis outcome of critically ill patients with ARF and factors related to outcome were evaluated. A total of 1662 patients from two ICUs and one acute dialysis unit in Helsinki University Hospital were included. In study I the prevalence of ARF was calculated and classified according to two ARF-specific scoring methods, the RIFLE classification and the classification created by Bellomo et al. (2001). Study II evaluated monocyte human histocompatibility leukocyte antigen-DR (HLA-DR) expression and plasma levels of one proinflammatory (interleukin (IL) 6) and two anti-inflammatory (IL-8 and IL-10) cytokines in predicting survival of critically ill ARF patients. Study III investigated serum cystatin C as a marker of renal function in ARF and its power in predicting survival of critically ill ARF patients. Study IV evaluated the effect of intermittent hemodiafiltration (HDF) on myoglobin elimination from plasma in severe rhabdomyolysis. Study V assessed long-term survival and health-related quality of life (HRQoL) in ARF patients. Neither of the ARF-specific scoring methods presented good discriminative power regarding hospital mortality. The maximum RIFLE score for the first three days in the ICU was an independent predictor of hospital mortality. As a marker of renal dysfunction, serum cystatin C failed to show benefit compared with plasma creatinine in detecting ARF or predicting patient survival. Neither cystatin C nor plasma concentrations of IL-6, IL-8, and IL-10, nor monocyte HLA-DR expression were clinically useful in predicting mortality in ARF patients. HDF may be used to clear myoglobin from plasma in rhabdomyolysis, especially if the alkalization of diuresis does not succeed. The long-term survival of patients with ARF was found to be poor. The HRQoL of those who survive is lower than that of the age- and gender-matched general population.
Resumo:
Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.