22 resultados para phosphorus nutrition

em Helda - Digital Repository of University of Helsinki


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suomen maatalousmaihin kertynyttä fosforia hyödynnetään tehottomasti, ja samalla muokkauskerroksen suuri fosforimäärä on alttiina huuhtoutumiselle. Arbuskelimykorritsaa (AM) hyödyntämällä on mahdollista tehostaa viljelykasvin fosforinottoa ja kasvua, ja siten vähentää fosforin huuhtoutumista. Tämän tutkielman tavoitteena oli selvittää mykorritsan vaikutus kasvin kasvuun ja fosforinottoon karjanlantalannoituksella mineraalilannoitukseen verrattuna sekä näiden lannoitusten pitkäaikaisvaikutusta AM-sieniyhteisöihin. Jotta lannoituskäytäntöjen vaikutus mykorritsaan voitiin suhteuttaa muihin maan laatutekijöihin, näiden käytäntöjen vaikutus myös satomääriin sekä muihin maan laatumittareihin arvioitiin. Pitkäaikainen kenttäkoe perustettiin kolmelle paikkakunnalle Pohjois-Ruotsissa vuosina 1965–66. Kuusivuotinen viljelykierto koostui joko viisivuotisesta nurmesta ja ohrasta tai ohramonokulttuurista. Lannoituskäsittelyt 32-vuoden ajan olivat suositusten mukainen (NPK) ja edelliseen nähden kaksinkertainen (2NPK) mineraalilannoitus sekä karjanlantalannoitus (KL), jonka ravinnemäärä vastasi NPK -käsittelyä. Kolmen lannoituskäsittelyn vaikutusta mykorritsan tehokkuuteen kasvin kasvun ja fosforiravitsemuksen näkökulmasta tutkittiin astiakokeissa. Mykorritsasieniyhteisöjen toiminnallisten erojen selvittämiseksi tehtiin takaisin- ja ristiinsiirrostuskoe. (5 v-%) steriloitua maanäytettä NPK- ja KL -käsittelyistä siirrostettiin käsittelemättömiin maanäytteisiin, jotka olivat samoista lannoituskäsittelyistä. Mykorritsan positiivinen vaikutus kasvin kasvuun ja fosforiravitsemukseen oli suurin kun käytettiin karjanlantaa. NPK ja 2NPK -käsittelyiden välillä ei havaittu eroja. Takaisin- ja ristiinsiirrostuskokeessa ei ollut tilastollisesti merkitseviä eroja. Nurmi- ja ohrasadot olivat suurimmat kun mineraalilannoitetta annettiin suosituksiin nähden kaksinkertainen määrä. Satomäärät olivat yhtä suuret tai suuremmat kun käytettiin karjanlantaa NPK –lannoituksen sijaan. Karjanlantakäsittely lisäsi maaperän kokonaishiili- ja kokonaistyppipitoisuutta verrattuna NPK -käsittelyyn, joka sisälsi saman määrän ravinteita. Samalla huuhtoutumiselle altis liukoisen fosforin pitoisuus säilyi alhaisella tasolla. Karjanlanta edisti mykorritsan toimintaedellytyksiä, ja siksi mykorritsasta saatua hyötyä fosforinotossa ja kasvuvaikutuksena mineraalilannoitteisiin verrattuna, mutta se ei vaikuttanut mykorritsasieniyhteisön toiminnallisiin ominaisuuksiin. Karjanlantalannoitus paransi mitattuja maan ominaisuuksia kokonaisuudessaan, eikä se vähentänyt satoja.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus (P) retention properties of soils typical for boreal forest, i.e. podzolic soil and peat soils, vary significantly, but the range of this variation has not been sufficiently documented. To assess the usefulness of buffer zones used in forestry in removing P from the discharge by chemical sorption in soil, and to estimate the risk of P leaching after forestry operations, more data is needed on soil P retention properties. P retention properties of soils were studied at clear-cut areas, unharvested buffer zones adjoining the clear-cut and at peatland buffer zone areas. Desorption-sorption isotherms were determined for the humus layer, the mineral soil horizons E, B and C of the Podzol profile and for the surface layer peat (0-15 cm) and the subsurface layer peat (15-30 cm). The efficiency of buffer zones in retaining P was studied at six peatland buffer zone areas by adding P-containing solute in the inflow. A tracer study was conducted at one of the buffer zone areas to determine the allocation of the added P in soil and vegetation. Measured sorption or desorption rather than parameter values of fitted sorption equations described P desorption and sorption behaviour in soil. The highest P retention efficiency was in the B horizon and consequently, if contact occurred or was established between the soluble P in the water and the soil B horizon, the risk of P leaching was low. Humus layer was completely incapable of retaining P after clear-cutting. In the buffer zones, the decrease in P retention properties in the humus layer and the low amount of P sorbed by it indicated that the importance of the layer in the functioning of buffer zones is low. The peatland buffer zone areas were efficient in retaining soluble P from inflow. P sorption properties of the peat soil at the buffer zone areas varied largely but the contribution of P sorption in the peat was particularly important during high flow in spring, when the vegetation was not fully developed. Factors contributing to efficient P retention were large buffer size and low hydrological load whereas high hydrological load combined with the formation of preferential flow paths, especially during early spring or late autumn was disadvantageous. However, small buffer zone areas, too, may be efficient in reducing P load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Malnutrition is a common problem for residents of nursing homes and long-term care hospitals. It has a negative influence on elderly residents and patients health and quality of life. Nutritional care seems to have a positive effect on elderly individuals nutritional status and well-being. Studies of Finnish elderly people s nutrition and nutritional care in institutions are scarce. Objectives: The primary aim was to investigate the nutritional status and its associated factors of elderly nursing home residents and long-term care patients in Finland. In particular, to find out, if the nursing or nutritional care factors are associated with the nutritional status, and how do carers and nurses recognize malnutrition. A further aim was to assess the energy and nutrient intake of the residents of dementia wards. A final objective was to find out, if the nutrition training of professionals leads to changes in their knowledge and further translate into better nutrition for the aged residents of dementia wards. Subjects and methods: The residents (n=2114) and patients (n=1043) nutritional status was assessed in all studies using the Mini Nutritional Assessment test (MNA). Information was gathered in a questionnaire on residents and patients daily routines providing nutritional care. Residents energy and nutrient intake (n=23; n=21) in dementia wards were determined over three days by the precise weighing method. Constructive learning theory was the basis for educating the professionals (n=28). A half-structured questionnaire was used to assess professionals learning. Studies I-IV were cross-sectional studies whereas study V was an intervention study. Results: Malnutrition was common among elderly residents and patients living in nursing homes and hospitals in Finland. According to the MNA, 11% to 57% of the studied elderly people suffered from malnutrition, and 40-89% were at risk of malnutrition, whereas only 0-16% had a good nutritional status. Resident- and patient-related factors such as dementia, impaired ADL (Activities of Daily Living), swallowing difficulties and constipation mainly explained the malnutrition, but also some nutritional care related factors, such as eating less than half of the offered food portion and not receiving snacks were also related to malnutrition. The intake of energy and some nutrients by the residents of dementia wards were lower than those recommended, although the offered food contained enough energy and nutrients. The proportion of residents receiving vitamin D supplementation was low, although there is a recommendation and known benefits for the adequate intake of vitamin D. Nurses recognized malnutrition poorly, only one in four (26.7%) of the actual cases. Keeping and analysing food diaries and reflecting on nutritional issues in small group discussions were effective training methods for professionals. The nutrition education of professionals had a positive impact on the energy and protein intake, BMIs, and the MNA scores of some residents in dementia wards. Conclusions: Malnutrition was common among elderly residents and patients living in nursing homes and hospitals in Finland. Although residents- and patient related factors mainly explained malnutrition, nurses recognized malnutrition poorly and nutritional care possibilities were in minor use. Professionals nutrition education had a positive impact on the nutrition of elderly residents. Further studies describing successful nutritional care and nutrition education of professionals are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical characteristics and behaviour of sediment phosphorus in the northeastern Baltic Sea Eutrophication is a severe environmental problem in the Baltic Sea, especially in the Gulf of Finland and the Archipelago Sea, and it is enhanced by the release of phosphorus (P) from bottom sediments. The release of P from sediment reserves largely depends on the occurrence of P in different chemical forms and on the prevailing conditions, especially on the presence of oxygen. This study examines the chemical character and the vertical distribution of sediment P in two shallow estuaries, in shallow coastal sediments overlain by oxic near-bottom water, and in poorly oxygenated open sea sediments in the northeastern Baltic Sea. The objective was to evaluate how much of the sediment P is buried and removed from the nutrient cycle, and how much of it is in forms that can be released from the sediment to the overlaying water over time. Relationships between the distribution of the different P forms and the chemical and physical properties of the sediment, sediment pore water, and near-bottom water were determined in order to examine the behaviour of P at the sediment-water interface. The results show that the chemical character of sediment P varied in the different areas. Generally, in the outer estuaries and in the organic-rich coastal areas in the eastern Gulf of Finland, the sediments were higher in P than the sediments in the poorly oxygenated open sea areas in the central and western Gulf. The estuary sediments that received erosion-transported material were characterised by P bound to hydrated oxides of iron and aluminum. Iron-bound P is sensitive to changes in redox-conditions, but part of it was buried in the estuaries, possibly because of high sedimentation rates and incomplete reduction of iron. The open sea sediments in the central and western Gulf of Finland were dominated by apatite-P, which was also abundant in the areas strongly affected by sediment transportation. The burial of sediment P was most effective in the areas rich in apatite-P, which is a relatively stable form of P in sediment. In the eastern Gulf of Finland, organic P forms predominated in the organic-rich sediments. A part of these P forms will be buried, while part will be degraded in the long term, releasing soluble P to the pore water. In the poorly oxygenated areas, iron compounds at the sediment surface are not able to retain P released during mineralisation of organic matter or reduction-induced dissolution of iron-compounds in deep sediment layers. However, in the shallow coastal areas overlain by oxic near-bottom water, the organic-rich surface sediment can also become temporarily reduced and release P from the sediment to the overlaying water. The considerable variation in the chemical composition of sediment P reserves in the northeastern Baltic Sea proved that it is an important factor and should be taken into account when evaluating the release of sediment P and the role of P reserves in bottom sediments in eutrophication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overwhelming majority of all the research on soil phosphorus (P) has been carried out with soil samples taken from the surface soils only, and our understanding of the forms and the reactions of P at a soil profile scale is based on few observations. In Finland, the interest in studying the P in complete soil profiles has been particularly small because of the lack of tradition in studying soil genesis, morphology, or classification. In this thesis, the P reserves and the retention of orthophosphate phosphorus (PO4-P) were examined in four cultivated mineral soil profiles in Finland (three Inceptisols and one Spodosol). The soils were classified according to the U.S. Soil Taxonomy and soil samples were taken from the genetic horizons in the profiles. The samples were analyzed for total P concentration, Chang and Jackson P fractions, P sorption properties, concentrations of water-extractable P, and for concentrations of oxalate-extractable Al and Fe. Theoretical P sorption capacities and degrees of P saturation were calculated with the data from the oxalate-extractions and the P fractionations. The studied profiles can be divided into sections with clearly differing P characteristics by their master horizons Ap, B and C. The C (or transitional BC) horizons below an approximate depth of 70 cm were dominated by, assumingly apatitic, H2SO4-soluble P. The concentration of total P in the C horizons ranged from 729 to 810 mg kg-1. In the B horizons between the depths of 30 and 70 cm, a significant part of the primary acid-soluble P has been weathered and transformed to secondary P forms. A mean weathering rate of the primary P in the soils was estimated to vary between 230 and 290 g ha-1 year-1. The degrees of P saturation in the B and C horizons were smaller than 7%, and the solubility of PO4-P was negligible. The P conditions in the Ap horizons differed drastically from those in the subsurface horizons. The high concentrations of total P (689-1870 mg kg-1) in the Ap horizons are most likely attributable to long-term cultivation with positive P balances. A significant proportion of the P in the Ap horizons occurred in the NH4F- and NaOH-extractable forms and as organic P. These three P pools, together with the concentrations of oxalate-extractable Al and Fe, seem to control the dynamics of PO4-P in the soils. The degrees of P saturation in the Ap horizons were greater (8-36%) than in the subsurface horizons. This was also reflected in the sorption experiments: Only the Ap horizons were able to maintain elevated PO4-P concentrations in the solution phase − all the subsoil horizons acted as sinks for PO4-P. Most of the available sorption capacity in the soils is located in the B horizons. The results suggest that this capacity could be utilized in reducing the losses of soluble P from excessively fertilized soils by mixing highly sorptive material from the B horizons with the P-enriched surface soil. The drastic differences in the P characteristics observed between adjoining horizons have to be taken into consideration when conducting soil sampling. Sampling of subsoils has to be made according to the genetic horizons or at small depth increments. Otherwise, contrasting materials are likely to be mixed in the same sample; and the results of such samples are not representative of any material present in the studied profile. Air-drying of soil samples was found to alter the results of the sorption experiments and the water extractions. This indicates that the studies on the most labile P forms in soil should be carried out with moist samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrition affects bone health throughout life. To optimize peak bone mass development and maintenance, it is important to pay attention to the dietary factors that enhance and impair bone metabolism. In this study, the in vivo effects of inorganic dietary phosphate and the in vitro effects of bioactive tripeptides, IPP, VPP and LKP were investigated. Dietary phosphate intake is increased through the use of convenience foods and soft drinks rich in phosphate-containing food additives. Our results show that increased dietary phosphate intake hinders mineral deposition in cortical bone and diminishes bone mineral density (BMD) in the aged skeleton in a rodent model (Study I). In the growing skeleton (Study II), increased phosphate intake was observed to reduce bone material and structural properties, leading to diminished bone strength. Studies I and II revealed that a low Ca:P ratio has negative effects on the mature and growing rat skeleton even when calcium intake is sufficient. High dietary protein intake is beneficial for bone health. Protein is essential for bone turnover and matrix formation. In addition, hydrolysis of proteins in the gastrointestinal tract produces short peptides that possess a biological function beyond that of being tissue building blocks. The effects of three bioactive tripeptides, IPP, VPP and LKP, were assessed in short- and long-term in vitro experiments. Short-term treatment (24 h) with tripeptide IPP, VPP or LKP influenced osteoblast gene expression (Study III). IPP in particular, regulates genes associated with cell differentiation, cell growth and cell signal transduction. The upregulation of these genes indicates that IPP enhances osteoblast proliferation and differentiation. Long-term treatment with IPP enhanced osteoblast gene expression in favour of bone formation and increased mineralization (Study IV). The in vivo effects of IPP on osteoblast differentiation might differ since eating frequency drives food consumption, and protein degradation products, such as bioactive peptides, are available periodically, not continuously as in this study. To sum up, Studies I and II raise concern about the appropriate amount of dietary phosphate to support bone health as excess is harmful. Studies III and IV in turn, support findings of the beneficial effects of dietary protein on bone and provide a mechanistic explanation since cell proliferation and osteoblast function were improved by treatment with bioactive tripeptide IPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantification and characterisation of soil phosphorus (P) is of agricultural and environmental importance and different extraction methods are widely used to asses the bioavailability of P and to characterize soil P reserves. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is crucial to know the scientific relevance of the methods used for various purposes. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. The aim of this thesis was to study the effects of sample preparation procedures on soil P and to determine the dependence of the recovered P pool on the chemical nature of extractants. Sampling is a critical step in soil testing and sampling strategy is dependent on the land-use history and the purpose of sampling. This study revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. However, freezing induced only insignificant changes and thus, freezing can be taken to be a suitable method for storing soils from the boreal zone that naturally undergo periodic freezing. The results demonstrated that chemical nature of the extractant affects its sensitivity to detect changes in soil P solubility. Buffered extractants obscured the alterations in P solubility induced by pH changes; however, water extraction, though sensitive to physicochemical changes, can be used to reveal short term changes in soil P solubility. As for the organic P, the analysis was found to be sensitive to the sample preparation procedures: filtering may leave a large proportion of extractable organic P undetected, whereas the outcome of centrifugation was found to be affected by the ionic strength of the extractant. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. However, interpretation of the results from extraction experiments requires better understanding of the biogeochemical function of the recovered P fraction in the P cycle in differently managed soils under dissimilar climatic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low solubility of iron (Fe) depresses plant growth in calcareous soils. In order to improve Fe availability, calcareous soils are treated with synthetic ligands, such as ethylenediaminetetraacetic acid (EDTA) and ethylenediimi-nobis(2-hydroxyphenyl)acetic acid (EDDHA). However, high expenses may hinder their use (EDDHA), and the recalcitrance of EDTA against biodegra-dation may increase the potential of cadmium (Cd) and lead (Pb) leaching. This study evaluated the ability of biodegradable ligands, i.e. different stereo-isomers of ethylenediaminedisuccinic acid (EDDS), to provide Fe for lettuce (Lactuca sativa L.) and ryegrass (Lolium perenne cv. Prego), their effects on uptake of other elements and solubility in soils and their subsequent effects on the activity of oxygen-scavenging enzymes in lettuce. Both EDTA and EDDHA were used as reference ligands. In unlimed and limed quartz sand both FeEDDS(S,S) and a mixture of stereo-isomers of FeEDDS (25% [S,S]-EDDS, 25% [R,R]-EDDS and 50% [S,R]/[R,S]-EDDS), FeEDDS(mix), were as efficient as FeEDTA and FeEDDHA in providing lettuce with Fe. However, in calcareous soils only FeEDDS(mix) was comparable to FeEDDHA when Fe was applied twice a week to mimic drip irrigation. The Fe deficiency increased the manganese (Mn) concentration in lettuce in both acidic and alkaline growth media, whereas Fe chelates depressed it. The same was observed with zinc (Zn) and copper (Cu) in acidic growth media. EDDHA probably affected the hormonal status of lettuce as well and thus depressed the uptake of Zn and Mn even more. The nutrient concentrations of ryegrass were only slightly affected by the Fe availability. After Fe chelate splitting in calcareous soils, EDDS and EDTA increased the solubility of Zn and Cu most, but only the Zn concentration was increased in lettuce. The availability of Fe increased the activity of oxygen-scavenging enzymes (ascorbate peroxidase, guaiacol peroxidase, catalase). The activity of Cu/ZnSOD (Cu/Zn superoxide dismutase) and MnSOD in lettuce leaves followed the concentrations of Zn and Mn. In acidic quartz sand low avail-ability of Fe increased the cobalt (Co) and nickel (Ni) concentrations in let-tuce, but Fe chelates decreased them. EDTA increased the solubility of Cd and Pb in calcareous soils, but not their uptake. The biodegradation of EDDS was not affected by the complexed element, and [S,S]-EDDS was biodegraded within 28 days in calcareous soils. EDDS(mix) was more recalcitrant, and after 56 days of incubation water-soluble elements (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) corresponded to 10% of the added EDDS(mix) concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary habits have changed during the past decades towards an increasing consumption of processed foods, which has notably increased not only total dietary phosphorus (P) intake, but also intake of P from phosphate additives. While the intake of calcium (Ca) in many Western countries remains below recommended levels (800 mg/d), the usual daily P intake in a typical Western diet exceeds by 2- to 3-fold the dietary guidelines (600 mg/d). The effects of high P intake in healthy humans have been investigated seldom. In this thesis healthy 20- to 43-year-old women were studied. In the first controlled study (n = 14), we examined the effects of P doses, and in a cross-sectional study (n = 147) the associations of habitual P intakes with Ca and bone metabolism. In this same cross-sectional study, we also investigated whether differences exist between dietary P originating from natural P sources and phosphate additives. The second controlled study (n = 12) investigated whether by increasing the Ca intake, the effects of a high P intake could be reduced. The associations of habitual dietary calcium-to-phosphorus ratios (Ca:P ratio) with Ca and bone metabolism were determined in a cross-sectional study design (n = 147). In the controlled study, the oral intake of P doses (495, 745, 1245 and 1995 mg/d) with a low Ca intake (250 mg/d) increased serum parathyroid hormone (S-PTH) concentration in a dose-dependent manner. In addition, the highest P dose decreased serum ionized calcium (S-iCa) concentration and bone formation and increased bone resorption. In the second controlled study with a dietary P intake of 1850 mg/d, by increasing the Ca intake from 480 mg/d to 1080 mg/d and then to 1680 mg/d, the S-PTH concentration decreased, the S-iCa concentration increased and bone resorption decreased dose-dependently. However, not even the highest Ca intake could counteract the effect of high dietary P on bone formation, as indicated by unchanged bone formation activity. In the cross-sectional studies, a higher habitual dietary P intake (>1650 mg/d) was associated with lower S-iCa and higher S-PTH concentrations. The consumption of phosphate additive-containing foods was associated with a higher S-PTH concentration. Moreover, habitual low dietary Ca:P ratios (≤0.50, molar ratio) were associated with higher S-PTH concentrations and 24-h urinary Ca excretions, suggesting that low dietary Ca:P ratios may interfere with homeostasis of Ca metabolism and increase bone resorption. In summary, excessive dietary P intake in healthy Finnish women seems to be detrimental to Ca and bone metabolism, especially when dietary Ca intake is low. The results indicate that by increasing dietary Ca intake to the recommended level, the negative effects of high P intake could be diminished, but not totally prevented. These findings imply that phosphate additives may be more harmful than natural P. Thus, reduction of an excessively high dietary P intake is also beneficial for healthy individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.