3 resultados para passenger
em Helda - Digital Repository of University of Helsinki
Resumo:
Colorectal cancer (CRC) is the third most common cancer in Finland. Of all CRC tumors, 15% display microsatellite-instability (MSI) caused by defective cellular mismatch repair. Cells displaying MSI accumulate a high number of mutations genome-wide, especially in short repeat areas, microsatellites. When targeting genes essential for cell growth or death, MSI can promote tumorigenesis. In non-coding areas, microsatellite mutations are generally considered as passenger events. Since the discovery of MSI and its linkage to cancer, more that 200 genes have been investigated for a role in MSI tumorigenesis. Although various criteria have been suggested for MSI target gene identification, the challenge has been to distinguish driver mutations from passenger mutations. This study aimed to clarify these key issues in the research field of MSI cancer. Prior to this, background mutation rate in MSI cancer has not been studied in a large-scale. We investigated the background mutation rate in MSI CRC by analyzing the spectrum of microsatellite mutations in non-coding areas. First, semenogelin I was studied for a possible role in MSI carcinogenesis. The intronic T9 repeat of semenogelin I was frequently mutated but no evidence for selection during tumorigenesis was obtained. Second, a sequencing approach was utilized to evaluate the general background mutation rate in MSI CRC. Both intronic and intergenic repeats harbored extremely high mutation rates of ≤ 87% and intergenic repeats were more unstable than the intronic repeats. As mutation rates of presumably neutral microsatellites can be high in MSI CRC in the absence of apparent selection pressure, high mutation frequency alone is not sufficient evidence for identification of driver MSI target genes. Next, an unbiased approach was designed to identify the mutatome of MSI CRC. By combining expression array data and a database search we identified novel genes possibly related to MSI CRC carcinogenesis. One of the genes was studied further. In the functional analysis this gene was observed to cause an abnormal cancer-prone cellular phenotype, possibly through altered responses to DNA damage. In our recent study, smooth muscle myosin heavy chain 11 (MYH11) was identified as a novel MSI CRC gene. Additionally, MYH11 has a well established role in acute myeloid leukemia (AML) through an oncogenic fusion protein CBFB-MYH11. We investigated further the role of MYH11 in AML by sequencing. Three novel missense variants of MYH11 were identified. None of the variants were present in the population-based control material. One of the identified variants, V71A, lies in the N-terminal SH3-like domain of MYH11 of unknown function. The other two variants, K1059E and R1792Q are located in the coil-coiled myosin rod essential for the regulation and filament formation of MYH11. The variant K1059E lies in the close proximity of the K1044N that has been functionally assessed in our earlier work of CRC and has been reported to cause total loss of MYH11 protein regulation. As the functional significance of the three novel variants examined in this work remains unknown, future studies should clarify the further role of MYH11 in AML leukaemogenesis and in other malignancies.
Resumo:
Trimeric autotransporters are a family of secreted outer membrane proteins in Gram-negative bacteria. These obligate homotrimeric proteins share a conserved C-terminal region, termed the translocation unit. This domain consists of an integral membrane β-barrel anchor and associated α-helices which pass through the pore of the barrel. The α-helices link to the extracellular portion of the protein, the passenger domain. Autotransportation refers to the way in which the passenger domain is secreted into the extracellular space. It appears that the translocation unit mediates the transport of the passenger domain across the outer membrane, and no external factors, such as ATP, ion gradients nor other proteins, are required. The passenger domain of autotransporters contains the specific activities of each protein. These are usually related to virulence. In trimeric autotransporters, the main function of the proteins is to act as adhesins. One such protein is the Yersinia adhesin YadA, found in enteropathogenic species of Yersinia. The main activity of YadA from Y. enterocolitica is to bind collagen, and it also mediates adhesion to other molecules of the extracellular matrix. In addition, YadA is involved in serum resistance, phagocytosis resistance, binding to epithelial cells and autoagglutination. YadA is an essential virulence factor of Y. enterocolitica, and removal of this protein from the bacteria leads to avirulence. In this study, I investigated the YadA-collagen interaction by studying the binding of YadA to collagen-mimicking peptides by several biochemical and biophysical methods. YadA bound as tightly to the triple-helical model peptide (Pro-Hyp-Gly)10 as to native collagen type I. However, YadA failed to bind a similar peptide that does not form a collagenous triple helix. As (Pro-Hyp-Gly)10 does not contain a specific sequence, we concluded that a triple-helical conformation is necessary for YadA binding, but no specific sequence is required. To further investigate binding determinants for YadA in collagens, I examined the binding of YadA to a library of collagen-mimicking peptides that span the entire triple-helical sequences of human collagens type II and type III. YadA bound promiscuously to many but not all peptides, indicating that a triple-helical conformation alone is not sufficient for binding. The high-binding peptides did not share a clear binding motif, but these peptides were rich in hydroxyproline residues and contained a low number of charged residues. YadA thus binds collagens without sequence specificity. This strategy of promiscuous binding may be advantageous for pathogenic bacteria. The Eib proteins from Escherichia coli are immunoglobulin (Ig)-binding homologues of YadA. I showed conclusively that recombinant EibA, EibC, EibD and EibF bind to IgG Fc. I crystallised a fragment of the passenger domain of EibD, which binds IgA in addition to IgG. The structure has a YadA-like head domain and an extended coiled-coil stalk. The top half of the coiled-coil is right-handed with hendecad periodicity, whereas the lower half is a canonical left-handed coiled-coil. At the transition from right- to left-handedness, a small β-sheet protrudes from each monomer. I was able to map the binding regions for IgG and IgA using truncations and site-directed mutagenesis to the coiled-coil stalk and identified residues critical for Ig binding.