6 resultados para non-linear regression
em Helda - Digital Repository of University of Helsinki
Resumo:
The factors affecting the non-industrial, private forest landowners' (hereafter referred to using the acronym NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the landowners' choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models. The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, landowner's positive price expectations for the next eight years, landowner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40. In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.34 and the relative root mean square error obtained from the test data was 0.38. In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with the complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.
Resumo:
Detecting Earnings Management Using Neural Networks. Trying to balance between relevant and reliable accounting data, generally accepted accounting principles (GAAP) allow, to some extent, the company management to use their judgment and to make subjective assessments when preparing financial statements. The opportunistic use of the discretion in financial reporting is called earnings management. There have been a considerable number of suggestions of methods for detecting accrual based earnings management. A majority of these methods are based on linear regression. The problem with using linear regression is that a linear relationship between the dependent variable and the independent variables must be assumed. However, previous research has shown that the relationship between accruals and some of the explanatory variables, such as company performance, is non-linear. An alternative to linear regression, which can handle non-linear relationships, is neural networks. The type of neural network used in this study is the feed-forward back-propagation neural network. Three neural network-based models are compared with four commonly used linear regression-based earnings management detection models. All seven models are based on the earnings management detection model presented by Jones (1991). The performance of the models is assessed in three steps. First, a random data set of companies is used. Second, the discretionary accruals from the random data set are ranked according to six different variables. The discretionary accruals in the highest and lowest quartiles for these six variables are then compared. Third, a data set containing simulated earnings management is used. Both expense and revenue manipulation ranging between -5% and 5% of lagged total assets is simulated. Furthermore, two neural network-based models and two linear regression-based models are used with a data set containing financial statement data from 110 failed companies. Overall, the results show that the linear regression-based models, except for the model using a piecewise linear approach, produce biased estimates of discretionary accruals. The neural network-based model with the original Jones model variables and the neural network-based model augmented with ROA as an independent variable, however, perform well in all three steps. Especially in the second step, where the highest and lowest quartiles of ranked discretionary accruals are examined, the neural network-based model augmented with ROA as an independent variable outperforms the other models.
Resumo:
Seminal plasma (SP) is the fluid portion of semen, secreted by the epididymides and the accessory glands before and during ejaculation. The stallion s ejaculate is a series of jets that differ in sperm concentration, semen volume and biochemical composition. Before the actual ejaculation, a clear and watery pre-sperm fluid is secreted. The first three jets form the sperm-rich fractions, and contain ¾ of the total number of sperm. The semen volume and sperm concentration in each of the jets decrease towards the end of the ejaculation, and the last jets are sperm-poor fractions with a low sperm concentration. The aims of these studies were to examine the effects of the different SP fractions, and the presence of SP, on sperm survival during storage. Pre-sperm fluid, and semen fractions with a high (sperm-rich) and low (sperm-poor) sperm concentration were collected in five experiments. The levels of selected enzymes, electrolytes and proteins in different SP fractions were determined. These studies also aimed at assessing the individual variation in the levels of the selected SP components and in the effects of SP on spermatozoa. The association between the components of SP and semen quality, sperm longevity, and fertility was examined with a stepwise linear regression analysis. Compared to samples containing SP during storage, centrifugation and the subsequent removal of SP reduced sperm motility parameters during 24 h of cooled storage in all SP fractions, but sperm membrane integrity was not affected. Some of the measured post-thaw motility parameters were also higher in samples containing SP compared to samples stored without SP. In contrast, the proportion of DNA-damaged spermatozoa was greater in the samples stored with SP than those without SP, and this effect was seen in both sperm-rich and sperm-poor fractions. There were no differences in DNA integrity between fractions stored with SP, but the sperm-rich fraction showed less DNA damage than the sperm-poor fraction after SP removal. The differences between fractions in sperm motility after cooled storage were non-significant. The levels of alkaline phosphatase, acid phosphatase and β-glucuronidase were higher in the sperm-rich fractions compared to the sperm-poor fractions, while the concentrations of calcium and magnesium were higher in sperm-poor fractions than in sperm-rich fractions. The concentrations of sodium and chloride were highest in pre-sperm fluid. In the sperm-poor fraction, the level of potassium was associated with the maintenance of sperm motility during storage. The levels of alkaline and acid phosphatase were associated with sperm concentration and the total number of spermatozoa in the ejaculates. None of the measured SP components were correlated to the first cycle pregnancy rate. In summary, the removal of SP improved DNA integrity after cooled storage compared with samples containing SP. There were no differences in the maintenance of sperm motility between the sperm-rich and sperm-poor fractions and whole ejaculates during cooled storage, irrespective of the presence of SP. The lowest rate of DNA damage was found in the sperm-rich fractions stored without SP. In practice, the results presented in this thesis support the use of individual modifications of semen processing techniques for cooled transported semen from subfertile stallions.
Resumo:
Lahopuun määrästä ja sijoittumisesta ollaan kiinnostuneita paitsi elinympäristöjen monimuotoisuuden, myös ilmakehän hiilen varastoinnin kannalta. Tutkimuksen tavoitteena oli kehittää aluepohjainen laserkeilausdataa hyödyntävä malli lahopuukohteiden paikantamiseksi ja lahopuun määrän estimoimiseksi. Samalla tutkittiin mallin selityskyvyn muuttumista mallinnettavan ruudun kokoa suurennettaessa. Tutkimusalue sijaitsi Itä-Suomessa Sonkajärvellä ja koostui pääasiassa nuorista hoidetuista talousmetsistä. Tutkimuksessa käytettiin harvapulssista laserkeilausdataa sekä kaistoittain mitattua maastodataa kuolleesta puuaineksesta. Aineisto jaettiin siten, että neljäsosa datasta oli käytössä mallinnusta varten ja loput varattiin valmiiden mallien testaamiseen. Lahopuun mallintamisessa käytettiin sekä parametrista että ei-parametrista mallinnusmenetelmää. Logistisen regression avulla erikokoisille (0,04, 0,20, 0,32, 0,52 ja 1,00 ha) ruuduille ennustettiin todennäköisyys lahopuun esiintymiselle. Muodostettujen mallien selittävät muuttujat valittiin 80 laserpiirteen ja näiden muunnoksien joukosta. Mallien selittävät muuttujat valittiin kolmessa vaiheessa. Aluksi muuttujia tarkasteltiin visuaalisesti kuvaamalla ne lahopuumäärän suhteen. Ensimmäisessä vaiheessa sopivimmiksi arvioitujen muuttujien selityskykyä testattiin mallinnuksen toisessa vaiheessa yhden muuttujan mallien avulla. Lopullisessa usean muuttujan mallissa selittävien muuttujien kriteerinä oli tilastollinen merkitsevyys 5 % riskitasolla. 0,20 hehtaarin ruutukoolle luotu malli parametrisoitiin muun kokoisille ruuduille. Logistisella regressiolla toteutetun parametrisen mallintamisen lisäksi, 0,04 ja 1,0 hehtaarin ruutukokojen aineistot luokiteltiin ei-parametrisen CART-mallinnuksen (Classification and Regression Trees) avulla. CARTmenetelmällä etsittiin aineistosta vaikeasti havaittavia epälineaarisia riippuvuuksia laserpiirteiden ja lahopuumäärän välillä. CART-luokittelu tehtiin sekä lahopuustoisuuden että lahopuutilavuuden suhteen. CART-luokituksella päästiin logistista regressiota parempiin tuloksiin ruutujen luokituksessa lahopuustoisuuden suhteen. Logistisella mallilla tehty luokitus parani ruutukoon suurentuessa 0,04 ha:sta(kappa 0,19) 0,32 ha:iin asti (kappa 0,38). 0,52 ha:n ruutukoolla luokituksen kappa-arvo kääntyi laskuun (kappa 0,32) ja laski edelleen hehtaarin ruutukokoon saakka (kappa 0,26). CART-luokitus parani ruutukoon kasvaessa. Luokitustulokset olivat logistista mallinnusta parempia sekä 0,04 ha:n (kappa 0,24) että 1,0 ha:n (kappa 0,52) ruutukoolla. CART-malleilla määritettyjen ruutukohtaisten lahopuutilavuuksien suhteellinen RMSE pieneni ruutukoon kasvaessa. 0,04 hehtaarin ruutukoolla koko aineiston lahopuumäärän suhteellinen RMSE oli 197,1 %, kun hehtaarin ruutukoolla vastaava luku oli 120,3 %. Tämän tutkimuksen tulosten perusteella voidaan todeta, että maastossa mitatun lahopuumäärän ja tutkimuksessa käytettyjen laserpiirteiden yhteys on pienellä ruutukoolla hyvin heikko, mutta vahvistuu hieman ruutukoon kasvaessa. Kun mallinnuksessa käytetty ruutukoko kasvaa, pienialaisten lahopuukeskittymien havaitseminen kuitenkin vaikeutuu. Tutkimuksessa kohteen lahopuustoisuus pystyttiin kartoittamaan kohtuullisesti suurella ruutukoolla, mutta pienialaisten kohteiden kartoittaminen ei onnistunut käytetyillä menetelmillä. Pienialaisten kohteiden paikantaminen laserkeilauksen avulla edellyttää jatkotutkimusta erityisesti tiheäpulssisen laserdatan käytöstä lahopuuinventoinneissa.
Resumo:
This thesis studies the interest-rate policy of the ECB by estimating monetary policy rules using real-time data and central bank forecasts. The aim of the estimations is to try to characterize a decade of common monetary policy and to look at how different models perform at this task.The estimated rules include: contemporary Taylor rules, forward-looking Taylor rules, nonlinearrules and forecast-based rules. The nonlinear models allow for the possibility of zone-like preferences and an asymmetric response to key variables. The models therefore encompass the most popular sub-group of simple models used for policy analysis as well as the more unusual non-linear approach. In addition to the empirical work, this thesis also contains a more general discussion of monetary policy rules mostly from a New Keynesian perspective. This discussion includes an overview of some notable related studies, optimal policy, policy gradualism and several other related subjects. The regression estimations are performed with either least squares or the generalized method of moments depending on the requirements of the estimations. The estimations use data from both the Euro Area Real-Time Database and the central bank forecasts published in ECB Monthly Bulletins. These data sources represent some of the best data that is available for this kind of analysis. The main results of this thesis are that forward-looking behavior appears highly prevalent, but that standard forward-looking Taylor rules offer only ambivalent results with regard to inflation. Nonlinear models are shown to work, but on the other hand do not have a strong rationale over a simpler linear formulation. However, the forecasts appear to be highly useful in characterizing policy and may offer the most accurate depiction of a predominantly forward-looking central bank. In particular the inflation response appears much stronger while the output response becomes highly forward-looking as well.