2 resultados para new categorical imperative

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses the following question: How to think about ethics in a technological world? The question is treated first thematically by framing central issues in the relationship between ethics and technology. This relationship has three distinct facets: i) technological advance poses new challenges for ethics, ii) traditional ethics may become poorly applicable in a technologically transformed world, and iii) the progress in science and technology has altered the concept of rationality in ways that undermine ethical thinking itself. The thematic treatment is followed by the description and analysis of three approaches to the questions framed. First, Hans Jonas s thinking on the ontology of life and the imperative of responsibility is studied. In Jonas s analysis modern culture is found to be nihilistic because it is unable to understand organic life, to find meaning in reality, and to justify morals. At the root of nihilism Jonas finds dualism, the traditional Western way of seeing consciousness as radically separate from the material world. Jonas attempts to create a metaphysical grounding for an ethic that would take the technologically increased human powers into account and make the responsibility for future generations meaningful and justified. The second approach is Albert Borgmann s philosophy of technology that mainly assesses the ways in which technological development has affected everyday life. Borgmann admits that modern technology has liberated humans from toil, disease, danger, and sickness. Furthermore, liberal democracy, possibilities for self-realization, and many of the freedoms we now enjoy would not be possible on a large scale without technology. Borgmann, however, argues that modern technology in itself does not provide a whole and meaningful life. In fact, technological conditions are often detrimental to the good life. Integrity in life, according to him, is to be sought among things and practices that evade technoscientific objectification and commodification. Larry Hickman s Deweyan philosophy of technology is the third approach under scrutiny. Central in Hickman s thinking is a broad definition of technology that is nearly equal to Deweyan inquiry. Inquiry refers to the reflective and experiential way humans adapt to their environment by modifying their habits and beliefs. In Hickman s work, technology consists of all kinds of activities that through experimentation and/or reflection aim at improving human techniques and habits. Thus, in addition to research and development, many arts and political reforms are technological for Hickman. He argues for recasting such distinctions as fact/value, poiesis/praxis/theoria, and individual/society. Finally, Hickman does not admit a categorical difference between ethics and technology: moral values and norms need to be submitted to experiential inquiry as well as all the other notions. This study mainly argues for an interdisciplinary approach to the ethics of technology. This approach should make use of the potentialities of the research traditions in applied ethics, the philosophy of technology, and the social studies on science and technology and attempt to overcome their limitations. This study also advocates an endorsement of mid-level ethics that concentrate on the practices, institutions, and policies of temporal human life. Mid-level describes the realm between the instantaneous and individualistic micro-level and the universal and global macro level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In meteorology, observations and forecasts of a wide range of phenomena for example, snow, clouds, hail, fog, and tornados can be categorical, that is, they can only have discrete values (e.g., "snow" and "no snow"). Concentrating on satellite-based snow and cloud analyses, this thesis explores methods that have been developed for evaluation of categorical products and analyses. Different algorithms for satellite products generate different results; sometimes the differences are subtle, sometimes all too visible. In addition to differences between algorithms, the satellite products are influenced by physical processes and conditions, such as diurnal and seasonal variation in solar radiation, topography, and land use. The analysis of satellite-based snow cover analyses from NOAA, NASA, and EUMETSAT, and snow analyses for numerical weather prediction models from FMI and ECMWF was complicated by the fact that we did not have the true knowledge of snow extent, and we were forced simply to measure the agreement between different products. The Sammon mapping, a multidimensional scaling method, was then used to visualize the differences between different products. The trustworthiness of the results for cloud analyses [EUMETSAT Meteorological Products Extraction Facility cloud mask (MPEF), together with the Nowcasting Satellite Application Facility (SAFNWC) cloud masks provided by Météo-France (SAFNWC/MSG) and the Swedish Meteorological and Hydrological Institute (SAFNWC/PPS)] compared with ceilometers of the Helsinki Testbed was estimated by constructing confidence intervals (CIs). Bootstrapping, a statistical resampling method, was used to construct CIs, especially in the presence of spatial and temporal correlation. The reference data for validation are constantly in short supply. In general, the needs of a particular project drive the requirements for evaluation, for example, for the accuracy and the timeliness of the particular data and methods. In this vein, we discuss tentatively how data provided by general public, e.g., photos shared on the Internet photo-sharing service Flickr, can be used as a new source for validation. Results show that they are of reasonable quality and their use for case studies can be warmly recommended. Last, the use of cluster analysis on meteorological in-situ measurements was explored. The Autoclass algorithm was used to construct compact representations of synoptic conditions of fog at Finnish airports.