26 resultados para nadp( )-dependent isocitrate dehydrogenase
em Helda - Digital Repository of University of Helsinki
Resumo:
The baker s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L arabinose present in plant biomass. In this study, one key metabolic step of the catabolic D-xylose pathway in recombinant D-xylose-utilising S. cerevisiae strains was studied. This step, carried out by xylulokinase (XK), was shown to be rate-limiting, because overexpression of the xylulokinase-encoding gene XKS1 increased both the specific ethanol production rate and the yield from D xylose. In addition, less of the unwanted side product xylitol was produced. Recombinant D-xylose-utilizing S. cerevisiae strains have been constructed by expressing the genes coding for the first two enzymes of the pathway, D-xylose reductase (XR) and xylitol dehydrogenase (XDH) from the D-xylose-utilising yeast Pichia stipitis. In this study, the ability of endogenous genes of S. cerevisiae to enable D-xylose utilisation was evaluated. Overexpression of the GRE3 gene coding for an unspecific aldose reductase and the ScXYL2 gene coding for a xylitol dehydrogenase homologue enabled growth on D-xylose in aerobic conditions. However, the strain with GRE3 and ScXYL2 had a lower growth rate and accumulated more xylitol compared to the strain with the corresponding enzymes from P. stipitis. Use of the strictly NADPH-dependent Gre3p instead of the P. stipitis XR able to utilise both NADH and NADPH leads to a more severe redox imbalance. In a S. cerevisiae strain not engineered for D-xylose utilisation the presence of D-xylose increased xylitol dehydrogenase activity and the expression of the genes SOR1 or SOR2 coding for sorbitol dehydrogenase. Thus, D-xylose utilisation by S. cerevisiae with activities encoded by ScXYL2 or possibly SOR1 or SOR2, and GRE3 is feasible, but requires efficient redox balance engineering. Compared to D-xylose, D-glucose is a cheap and readily available substrate and thus an attractive alternative for xylitol manufacture. In this study, the pentose phosphate pathway (PPP) of S. cerevisiae was engineered for production of xylitol from D-glucose. Xylitol was formed from D-xylulose 5-phosphate in strains lacking transketolase activity and expressing the gene coding for XDH from P. stipitis. In addition to xylitol, ribitol, D-ribose and D-ribulose were also formed. Deletion of the xylulokinase-encoding gene increased xylitol production, whereas the expression of DOG1 coding for sugar phosphate phosphatase increased ribitol, D-ribose and D-ribulose production. Strains lacking phosphoglucose isomerase (Pgi1p) activity were shown to produce 5 carbon compounds through PPP when DOG1 was overexpressed. Expression of genes encoding glyceraldehyde 3-phosphate dehydrogenase of Bacillus subtilis, GapB, or NAD-dependent glutamate dehydrogenase Gdh2p of S. cerevisiae, altered the cellular redox balance and enhanced growth of pgi1 strains on D glucose, but co-expression with DOG1 reduced growth on higher D-glucose concentrations. Strains lacking both transketolase and phosphoglucose isomerase activities tolerated only low D-glucose concentrations, but the yield of 5-carbon sugars and sugar alcohols on D-glucose was about 50% (w/w).
Resumo:
Breast cancer is the most common cancer in women in the western countries. Approximately two-thirds of breast cancer tumours are hormone dependent, requiring estrogens to grow. Estrogens are formed in the human body via a multistep route starting from cholesterol. The final steps in the biosynthesis include the CYP450 aromatase enzyme, converting the male hormones androgens (preferred substrate androstenedione ASD) into estrogens(estrone E1), and the 17beta-HSD1 enzyme, converting the biologically less active E1 into the active hormone 17beta-hydroxyestradiol E2. E2 is bound to the nuclear estrogen receptors causing a cascade of biochemical reactions leading to cell proliferation in normal tissue, and to tumour growth in cancer tissue. Aromatase and 17beta-HSD1 are expressed in or near the breast tumour, locally providing the tissue with estrogens. One approach in treating hormone dependent breast tumours is to block the local estrogen production by inhibiting these two enzymes. Aromatase inhibitors are already on the market in treating breast cancer, despite the lack of an experimentally solved structure. The structure of 17beta-HSD1, on the other hand, has been solved, but no commercial drugs have emerged from the drug discovery projects reported in the literature. Computer-assisted molecular modelling is an invaluable tool in modern drug design projects. Modelling techniques can be used to generate a model of the target protein and to design novel inhibitors for them even if the target protein structure is unknown. Molecular modelling has applications in predicting the activities of theoretical inhibitors and in finding possible active inhibitors from a compound database. Inhibitor binding at atomic level can also be studied with molecular modelling. To clarify the interactions between the aromatase enzyme and its substrate and inhibitors, we generated a homology model based on a mammalian CYP450 enzyme, rabbit progesterone 21-hydroxylase CYP2C5. The model was carefully validated using molecular dynamics simulations (MDS) with and without the natural substrate ASD. Binding orientation of the inhibitors was based on the hypothesis that the inhibitors coordinate to the heme iron, and were studied using MDS. The inhibitors were dietary phytoestrogens, which have been shown to reduce the risk for breast cancer. To further validate the model, the interactions of a commercial breast cancer drug were studied with MDS and ligand–protein docking. In the case of 17beta-HSD1, a 3D QSAR model was generated on the basis of MDS of an enzyme complex with active inhibitor and ligand–protein docking, employing a compound library synthesised in our laboratory. Furthermore, four pharmacophore hypotheses with and without a bound substrate or an inhibitor were developed and used in screening a commercial database of drug-like compounds. The homology model of aromatase showed stable behaviour in MDS and was capable of explaining most of the results from mutagenesis studies. We were able to identify the active site residues contributing to the inhibitor binding, and explain differences in coordination geometry corresponding to the inhibitory activity. Interactions between the inhibitors and aromatase were in agreement with the mutagenesis studies reported for aromatase. Simulations of 17beta-HSD1 with inhibitors revealed an inhibitor binding mode with hydrogen bond interactions previously not reported, and a hydrophobic pocket capable of accommodating a bulky side chain. Pharmacophore hypothesis generation, followed by virtual screening, was able to identify several compounds that can be used in lead compound generation. The visualisation of the interaction fields from the QSAR model and the pharmacophores provided us with novel ideas for inhibitor development in our drug discovery project.
Resumo:
The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.
Resumo:
11β-hydroksisteroididehydrogenaasientsyymit (11β-HSD) 1 ja 2 säätelevät kortisonin ja kortisolin määrää kudoksissa. 11β-HSD1 -entsyymin ylimäärä erityisesti viskeraalisessa rasvakudoksessa aiheuttaa metaboliseen oireyhtymän klassisia oireita, mikä tarjoaa mahdollisuuden metabolisen oireyhtymän hoitoon 11β-HSD1 -entsyymin selektiivisellä estämisellä. 11β-HSD2 -entsyymin inhibitio aiheuttaa kortisonivälitteisen mineralokortikoidireseptorien aktivoitumisen, mikä puolestaan johtaa hypertensiivisiin haittavaikutuksiin. Haittavaikutuksista huolimatta 11β-HSD2 -entsyymin estäminen saattaa olla hyödyllistä tilanteissa, joissa halutaan nostaa kortisolin määrä elimistössä. Lukuisia selektiivisiä 11β-HSD1 inhibiittoreita on kehitetty, mutta 11β-HSD2-inhibiittoreita on raportoitu vähemmän. Ero näiden kahden isotsyymin aktiivisen kohdan välillä on myös tuntematon, mikä vaikeuttaa selektiivisten inhibiittoreiden kehittämistä kummallekin entsyymille. Tällä työllä oli kaksi tarkoitusta: (1) löytää ero 11β-HSD entsyymien välillä ja (2) kehittää farmakoforimalli, jota voitaisiin käyttää selektiivisten 11β-HSD2 -inhibiittoreiden virtuaaliseulontaan. Ongelmaa lähestyttiin tietokoneavusteisesti: homologimallinnuksella, pienmolekyylien telakoinnilla proteiiniin, ligandipohjaisella farmakoforimallinnuksella ja virtuaaliseulonnalla. Homologimallinnukseen käytettiin SwissModeler -ohjelmaa, ja luotu malli oli hyvin päällekäinaseteltavissa niin templaattinsa (17β-HSD1) kuin 11β-HSD1 -entsyymin kanssa. Eroa entsyymien välillä ei löytynyt tarkastelemalla päällekäinaseteltuja entsyymejä. Seitsemän yhdistettä, joista kuusi on 11β-HSD2 -selektiivisiä, telakoitiin molempiin entsyymeihin käyttäen ohjelmaa GOLD. 11β-HSD1 -entsyymiin yhdisteet kiinnittyivät kuten suurin osa 11β-HSD1 -selektiivisistä tai epäselektiivisistä inhibiittoreista, kun taas 11β-HSD2 -entsyymiin kaikki yhdisteet olivat telakoituneet käänteisesti. Tällainen sitoutumistapa mahdollistaa vetysidokset Ser310:een ja Asn171:een, aminohappoihin, jotka olivat nähtävissä vain 11β-HSD2 -entsyymissä. Farmakoforimallinnukseen käytettiin ohjelmaa LigandScout3.0, jolla ajettiin myös virtuaaliseulonnat. Luodut kaksi farmakoforimallia, jotka perustuivat aiemmin telakointiinkin käytettyihin kuuteen 11β-HSD2 -selektiiviseen yhdisteeseen, koostuivat kuudesta ominaisuudesta (vetysidosakseptori, vetysidosdonori ja hydrofobinen), ja kieltoalueista. 11β-HSD2 -selektiivisyyden kannalta tärkeimmät ominaisuudet ovat vetysidosakseptori, joka voi muodostaa sidoksen Ser310 kanssa ja vetysidosdonori sen vieressä. Tälle vetysidosdonorille ei löytynyt vuorovaikutusparia 11β-HSD2-mallista. Sopivasti proteiiniin orientoitunut vesimolekyyli voisi kuitenkin olla sopiva ratkaisu puuttuvalle vuorovaikutusparille. Koska molemmat farmakoforimallit löysivät 11β-HSD2 -selektiivisiä yhdisteitä ja jättivät epäselektiivisiä pois testiseulonnassa, käytettiin molempia malleja Innsbruckin yliopistossa säilytettävistä yhdisteistä (2700 kappaletta) koostetun tietokannan seulontaan. Molemmista seulonnoista löytyneistä hiteistä valittiin yhteensä kymmenen kappaletta, jotka lähetettiin biologisiin testeihin. Biologisien testien tulokset vahvistavat lopullisesti sen kuinka hyvin luodut mallit edustavat todellisuudessa 11β-HSD2 -selektiivisyyttä.
Resumo:
Androgen receptor (AR) is necessary for normal male phenotype development and essential for spermatogenesis. AR is a classical steroid receptor mediating actions of male sex steroids testosterone and 5-alpha-dihydrotestosterone. Numerous coregulators interact with the receptor and regulate AR activity on target genes. This study deals with the characterization of androgen receptor-interacting protein 4 (ARIP4). ARIP4 binds DNA, interacts with AR in vitro and in cultured yeast and mammalian cells, and modulates AR-dependent transactivation. ARIP4 is an active DNA-dependent ATPase, and this enzymatic activity is essential for the ability of ARIP4 to modulate AR function. On the basis of sequence homology in its ATPase domain, ARIP4 belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA repair, and homologous recombination. Similar to its closest homologs ATRX and Rad54, ARIP4 does not seem to be a classical chromatin remodeling protein in that it does not appear to form large protein complexes in vivo or remodel mononucleosomes in vitro. However, ARIP4 is able to generate superhelical torsion on linear DNA fragments. ARIP4 is covalently modified by SUMO-1, and mutation of six potential SUMO attachment sites abolishes the ability of ARIP4 to bind DNA, hydrolyze ATP, and activate AR function. ARIP4 expression starts in early embryonic development. In mouse embryo ARIP4 is present mainly in the neural tube and limb buds. In adult mouse tissues ARIP4 expression is virtually ubiquitous. In mouse testis ARIP4 is expressed in the nuclei of Sertoli cells in a stage-dependent manner. ARIP4 is also present in the nuclei of Leydig cells, spermatogonia, pachytene and diplotene spermatocytes. Testicular expression pattern of ARIP4 does not differ significantly in wild-type, FSHRKO, and LuRKO mice. In the testis of hpg mice, ARIP4 is found mainly in interstitial cells and has very low, if any, expression in Sertoli and germ cells. Heterozygous Arip4+/ mice are fertile and appear normal; however, they are haploinsufficient with regard to androgen action in Sertoli cells. In contrast, Arip4 / embryos are not viable. They have significantly reduced body size at E9.5 and die by E11.5. Compared to wild-type littermates, Arip4 / embryos possess a higher percentage of apoptotic cells at E9.5 and E10.5. Fibroblasts derived from Arip4 / embryos cease growing after 2-3 passages and exhibit a significantly increased apoptosis and decreased proliferation rate than cells from wild-type embryos. Our findings demonstrate that ARIP4 plays an essential role in mouse embryonic development. In addition, testicular expression and AR coregulatory activity of ARIP4 suggest a role of ARIP4-AR interaction in the somatic cells of the testis.
Defects in tricarboxylic acid cycle enzymes Fumarate hydratase and Succinate dehydrogenase in cancer
Resumo:
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a recently characterized cancer syndrome which predisposes to cutaneous and uterine leiomyomas as well as renal cell carcinoma (RCC). Uterine leiomyosarcoma (ULMS) has also been observed in certain Finnish HLRCC families. The predisposing gene for this syndrome, fumarate hydratase (FH), was identified in 2002. The well-known function of FH is in the tricarboxylic acid cycle (TCAC) in the energy metabolism of cells. As FH is a novel cancer gene, the role of FH mutations in tumours is in general unknown. Similarly, the mechanisms through which defective FH is associated with tumourigenesis are unclear. The loss of a wild type allele has been observed in virtually all HLRCC patients tumours and the FH enzyme activities are either totally lost or remarkably reduced in the tissues of mutation carrier patients. Therefore, FH is assumed to function as a tumour suppressor. Mutations in genes encoding subunits of other TCAC enzyme SDH have also been reported recently in tumours: mutations in SDHB, SDHC, and SDHD genes predispose to paraganglioma and pheochromocytoma. In the present study, mutations in the SDHB gene were observed to predispose to RCC. This was the first time that mutations in SDHB have been detected in extra-paraganglial tumours. Two different SDHB mutations were observed in two unrelated families. In the first family, the index patient was diagnosed with RCC at the age of 24 years. Additionally, his mother with a paraganglioma (PGL) of the heart and his maternal uncle with lung cancer were both carriers of the mutation. The RCC of the index patient and the PGL of his mother showed LOH. In the other family, an SDHB mutation was detected in two siblings who were both diagnosed with RCC at the ages of 24 and 26 years. Both of the siblings also suffered PGL. All these tumours showed LOH. Therefore, we concluded that mutations in SDHB predispose also for RCC in certain families. Several tumour types were analysed for FH mutations to define the role of FH mutations in these tumour types. In addition, patients with a putative cancer phenotype were analysed to identify new HLRCC families. Three FH variants were detected, of which two were novel. One of the variants was observed in a patient diagnosed with ULMS at the age of 41 years. However, LOH was not detected in the tumour tissue. The FH enzyme activity of the mutated protein was clearly reduced, being 43% of the activity of the normal protein. Together with the results from an earlier study we calculated that the prevalence of FH mutations in Finnish non-syndromic ULMS is around 2.4%. Therefore, FH mutations seem to have a minor role in the pathogenesis on non-syndromic ULMS. Two other germline variants were detected in a novel tumour type, ovarian mucinous cystadenoma. However, tumour tissues of the patients were not available for LOH studies and therefore LOH status remained unclear. Therefore, it is possible that FH mutations predispose also for ovarian tumours but further studies are needed to verify this result. A novel variant form of the FH gene (FHv) was identified and characterized in more detail. FHv contains an alternative first exon (1b), which appeared to function as 5 UTR sequence. The translation of FHv is initiated in vitro from exons two and three. The localization of FHv is both cytosolic and nuclear, in contrast to the localization of FH in mitochondria. FHv is expressed at low levels in all human tissues. Interestingly, the expression was induced after heat shock treatment and in chronic hypoxia. Therefore, FHv might have a role e.g. in the adaptation to unfavourable growth conditions. However, this remains to be elucidated.
Resumo:
Germline mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell cancer (HLRCC). FH is a nuclear encoded enzyme which functions in the Krebs tricarboxylic acid cycle, and homozygous mutation in FH lead to severe developmental defects. Both uterine and cutaneous leiomyomas are components of the HLRCC phenotype. Most of these tumours show loss of the wild-type allele and, also, the mutations reduce FH enzyme activity, which indicate that FH is a tumour suppressor gene. The renal cell cancers associated with HLRCC are of rare papillary type 2 histology. Other genes involved in the Krebs cycle, which are also implicated in neoplasia are 3 of the 4 subunits encoding succinate dehydrogenase (SDH); mutations in SHDB, SDHC, and SDHD predispose to paraganglioma and phaeochromocytoma. Although uterine leiomyomas (or fibroids) are very common, the estimations of affected women ranging from 25% to 77%, not much is known about their genetic background. Cytogenetic studies have revealed that rearrangements involving chromosomes 6, 7, 12 and 14 are most commonly seen in fibroids. Deletions on the long arm of chromosome 7 have been reported to be involved in about 17 to 34 % of leiomyomas and the small commonly deleted region on 7q22 suggests that there might be an underlying tumour suppressor gene in that region. The purpose of this study was to investigate the genetic mechanisms behind the development of tumours associated with HLRCC, both renal cell cancer and uterine fibroids. Firstly, a database search at the Finnish cancer registry was conducted in order to identify new families with early-onset RCC and to test if the family history was compatible with HLRCC. Secondly, sporadic uterine fibroids were tested for deletions on 7q in order to define the minimal deleted 7q-region, followed by mutation analysis of the candidate genes. Thirdly, oligonucleotide chips were utilised to study the global gene expression profiles of uterine fibroids in order to test whether 7q-deletions and FH mutations significantly affected fibroid biology. In the screen for early-onset RCC, 214 families were identified. Subsequently, the pedigrees were constructed and clinical data obtained. One of the index cases (RCC at the age of 28) had a mother who had been diagnosed with a heart tumour, which in further investigation turned out to be a paraganglioma. This lead to an alternative hypothesis that SDH, instead of FH, could be involved. SDHA, SDHB, SDHC and SDHD were sequenced from these individuals; a germline SDHB R27X mutation was detected with loss of the wild-type allele in both tumours. These results suggest that germline mutations in the SDHB gene predispose to early-onset RCC establishing a novel form of hereditary RCC. This has immediate clinical implications in the surveillance of patients suffering from early-onset RCC and phaeochromocytoma/paraganglioma. For the studies on sporadic uterine fibroids, a set of 166 fibroids from 51 individuals were collected. The 7q LOH mapping defined a commonly deleted region of about 3.2 mega bases in 11 of the 166 tumours. The deletion was consistent with previously reported allelotyping studies of leiomyomas and it therefore suggested the presence of a tumour suppressor gene in the deleted region. Furthermore, the high-resolution aCGH-chip analysis refined the deleted region to only 2.79Mb. When combined with previous data, the commonly deleted region was only 2.3Mb. The mutation screening of the known genes within the commonly deleted region did not reveal pathogenic mutations, however. The expression microarray analysis revealed that FH-deficient fibroids, both sporadic and familial, had their distinct gene expression profile as they formed their own group in the unsupervised clustering. On the other hand, the presence or absence of 7q-deletions did not significantly alter the global gene expression pattern of fibroids, suggesting that these two groups do not have different biological backgrounds. Multiple differentially expressed genes were identified between FH wild-type and FH-mutant fibroids, and the most significant increase was seen in the expression of carbohydrate metabolism-related and hypoxia inducible factor (HIF) target genes.
Resumo:
The purpose of this work was to identify some of the genes of the catabolic route of L-rhamnose in the yeast Pichia stipitis. There are at least two distinctly different pathways for L-rhamnose catabolism. The one described in bacteria has phosphorylated intermediates and the enzymes and the genes of this route have been described. The pathway described in yeast does not have phosphorylated intermediates. The intermediates and the enzymes of this pathway are known but none of the genes have been identified. The work was started by purifying the L-rhamnose dehydrogenase, which oxidates L-rhamnose to rhamnonic acid-gamma-lactone. NAD is used as a cofactor in this reaction. A DEAE ion exchange column was used for purification. The active fraction was further purified using a non-denaturing PAGE and the active protein identified by zymogram staining. In the last step the protein was separated in a SDS-PAGE, the protein band trypsinated and analysed by MALDI-TOF MS. This resulted in the identification of the corresponding gene, RHA1, which was then, after a codon change, expressed in Saccharomyces cerevisiae. Also C- or N-terminal histidine tags were added but as the activity of the enzyme was lost or strongly reduced these were not used. The kinetic properties of the protein were analysed in the cell extract. Substrate specifity was tested with different sugars; L-rhamnose, L-lyxose and L-mannose were oxidated by the enzyme. Vmax values were 180 nkat/mg, 160 nkat/mg and 72 nkat/mg, respectively. The highest affinity was towards L-rhamnose, the Km value being 0.9 mM. Lower affinities were obtained with L-lyxose, Km 4.3 mM, and L-mannose Km 25 mM. Northern analysis was done to study the transcription of RHA1 with different carbon sources. Transcription was observed only on L-rhamnose suggesting that RHA1 expression is L-rhamnose induced. A RHA1 deletion cassette for P. stipitis was constructed but the cassette had integrated randomly and not targeted to delete the RHA1 gene. Enzyme assays for L-lactaldehyde dehydrogenase were done similarly to L-rhamnose dehydrogenase assays. NAD is used as a cofactor also in this reaction where L-lactaldehyde is oxidised to L-lactate. The observed enzyme activities were very low and the activity was lost during the purification procedures.
Resumo:
Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.
Resumo:
Individual movement is very versatile and inevitable in ecology. In this thesis, I investigate two kinds of movement body condition dependent dispersal and small-range foraging movements resulting in quasi-local competition and their causes and consequences on the individual, population and metapopulation level. Body condition dependent dispersal is a widely evident but barely understood phenomenon. In nature, diverse relationships between body condition and dispersal are observed. I develop the first models that study the evolution of dispersal strategies that depend on individual body condition. In a patchy environment where patches differ in environmental conditions, individuals born in rich (e.g. nutritious) patches are on average stronger than their conspecifics that are born in poorer patches. Body condition (strength) determines competitive ability such that stronger individuals win competition with higher probability than weak individuals. Individuals compete for patches such that kin competition selects for dispersal. I determine the evolutionarily stable strategy (ESS) for different ecological scenarios. My models offer explanations for both dispersal of strong individuals and dispersal of weak individuals. Moreover, I find that within-family dispersal behaviour is not always reflected on the population level. This supports the fact that no consistent pattern is detected in data on body condition dependent dispersal. It also encourages the refining of empirical investigations. Quasi-local competition defines interactions between adjacent populations where one population negatively affects the growth of the other population. I model a metapopulation in a homogeneous environment where adults of different subpopulations compete for resources by spending part of their foraging time in the neighbouring patches, while their juveniles only feed on the resource in their natal patch. I show that spatial patterns (different population densities in the patches) are stable only if one age class depletes the resource very much but mainly the other age group depends on it.