3 resultados para monitoring applications

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tackling of coastal eutrophication requires water protection measures based on status assessments of water quality. The main purpose of this thesis was to evaluate whether it is possible both scientifically and within the terms of the European Union Water Framework Directive (WFD) to assess the status of coastal marine waters reliably by using phytoplankton biomass (ww) and chlorophyll a (Chl) as indicators of eutrophication in Finnish coastal waters. Empirical approaches were used to study whether the criteria, established for determining an indicator, are fulfilled. The first criterion (i) was that an indicator should respond to anthropogenic stresses in a predictable manner and has low variability in its response. Summertime Chl could be predicted accurately by nutrient concentrations, but not from the external annual loads alone, because of the rapid affect of primary production and sedimentation close to the loading sources in summer. The most accurate predictions were achieved in the Archipelago Sea, where total phosphorus (TP) and total nitrogen (TN) alone accounted for 87% and 78% of the variation in Chl, respectively. In river estuaries, the TP mass-balance regression model predicted Chl most accurately when nutrients originated from point-sources, whereas land-use regression models were most accurate in cases when nutrients originated mainly from diffuse sources. The inclusion of morphometry (e.g. mean depth) into nutrient models improved accuracy of the predictions. The second criterion (ii) was associated with the WFD. It requires that an indicator should have type-specific reference conditions, which are defined as "conditions where the values of the biological quality elements are at high ecological status". In establishing reference conditions, the empirical approach could only be used in the outer coastal water types, where historical observations of Secchi depth of the early 1900s are available. The most accurate prediction was achieved in the Quark. In the inner coastal water types, reference Chl, estimated from present monitoring data, are imprecise - not only because of the less accurate estimation method but also because the intrinsic characteristics, described for instance by morphometry, vary considerably inside these extensive inner coastal types. As for phytoplankton biomass, the reference values were less accurate than in the case of Chl, because it was possible to estimate reference conditions for biomass only by using the reconstructed Chl values, not the historical Secchi observations. An paleoecological approach was also applied to estimate annual average reference conditions for Chl. In Laajalahti, an urban embayment off Helsinki, strongly loaded by municipal waste waters in the 1960s and 1970s, reference conditions prevailed in the mid- and late 1800s. The recovery of the bay from pollution has been delayed as a consequence of benthic release of nutrients. Laajalahti will probably not achieve the good quality objectives of the WFD on time.    The third criterion (iii) was associated with coastal management including the resources it has available. Analyses of Chl are cheap and fast to carry out compared to the analyses of phytoplankton biomass and species composition; the fact which has an effect on number of samples to be taken and thereby on the reliability of assessments. However, analyses on phytoplankton biomass and species composition provide more metrics for ecological classification, the metrics which reveal various aspects of eutrophication contrary to what Chl alone does.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change contributes directly or indirectly to changes in species distributions, and there is very high confidence that recent climate warming is already affecting ecosystems. The Arctic has already experienced the greatest regional warming in recent decades, and the trend is continuing. However, studies on the northern ecosystems are scarce compared to more southerly regions. Better understanding of the past and present environmental change is needed to be able to forecast the future. Multivariate methods were used to explore the distributional patterns of chironomids in 50 shallow (≤ 10m) lakes in relation to 24 variables determined in northern Fennoscandia at the ecotonal area from the boreal forest in the south to the orohemiarctic zone in the north. Highest taxon richness was noted at middle elevations around 400 m a.s.l. Significantly lower values were observed from cold lakes situated in the tundra zone. Lake water alkalinity had the strongest positive correlation with the taxon richness. Many taxa had preference for lakes either on tundra area or forested area. The variation in the chironomid abundance data was best correlated with sediment organic content (LOI), lake water total organic carbon content, pH and air temperature, with LOI being the strongest variable. Three major lake groups were separated on the basis of their chironomid assemblages: (i) small and shallow organic-rich lakes, (ii) large and base-rich lakes, and (iii) cold and clear oligotrophic tundra lakes. Environmental variables best discriminating the lake groups were LOI, taxon richness, and Mg. When repeated, this kind of an approach could be useful and efficient in monitoring the effects of global change on species ranges. Many species of fast spreading insects, including chironomids, show a remarkable ability to track environmental changes. Based on this ability, past environmental conditions have been reconstructed using their chitinous remains in the lake sediment profiles. In order to study the Holocene environmental history of subarctic aquatic systems, and quantitatively reconstruct the past temperatures at or near the treeline, long sediment cores covering the last 10000 years (the Holocene) were collected from three lakes. Lower temperature values than expected based on the presence of pine in the catchment during the mid-Holocene were reconstructed from a lake with great water volume and depth. The lake provided thermal refuge for profundal, cold adapted taxa during the warm period. In a shallow lake, the decrease in the reconstructed temperatures during the late Holocene may reflect the indirect response of the midges to climate change through, e.g., pH change. The results from three lakes indicated that the response of chironomids to climate have been more or less indirect. However, concurrent shifts in assemblages of chironomids and vegetation in two lakes during the Holocene time period indicated that the midges together with the terrestrial vegetation had responded to the same ultimate cause, which most likely was the Holocene climate change. This was also supported by the similarity in the long-term trends in faunal succession for the chironomid assemblages in several lakes in the area. In northern Finnish Lapland the distribution of chironomids were significantly correlated with physical and limnological factors that are most likely to change as a result of future climate change. The indirect and individualistic response of aquatic systems, as reconstructed using the chironomid assemblages, to the climate change in the past suggests that in the future, the lake ecosystems in the north do not respond in one predictable way to the global climate change. Lakes in the north may respond to global climate change in various ways that are dependent on the initial characters of the catchment area and the lake.