6 resultados para modified universal soil loss equation

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In boreal forests, microorganisms have a pivotal role in nutrient and water supply of trees as well as in litter decomposition and nutrient cycling. This reinforces the link between above-ground and below-ground communities in the context of sustainable productivity of forest ecosystems. In northern boreal forests, the diversity of microbes associated with the trees is high compared to the number of distinct tree species. In this thesis, the aim was to study whether conspecific tree individuals harbour different soil microbes and whether the growth of the trees and the community structure of the associated microbes are connected. The study was performed in a clonal field trial of Norway spruce, which was established in a randomized block design in a clear-cut area. Since out-planting in 1994, the spruce clones showed two-fold growth differences. The fast-growing spruce clones were associated with a more diverse community of ectomycorrhizal fungi than the slow-growing spruce clones. These growth performance groups also differed with respect to other aspects of the associated soil microorganisms: the species composition of ectomycorrhizal fungi, in the amount of extraradical fungal mycelium, in the structure of bacterial community associated with the mycelium, and in the structure of microbial community in the organic layer. The communities of fungi colonizing needle litter of the spruce clones in the field did not differ and the loss of litter mass after two-years decomposition was equal. In vitro, needles of the slow-growing spruce clones were colonized by a more diverse community of endophytic fungi that were shown to be significant needle decomposers. This study showed a relationship between the growth of Norway spruce clones and the community structure of the associated soil microbes. Spatial heterogeneity in soil microbial community was connected with intraspecific variation of trees. The latter may therefore influence soil biodiversity in monospecific forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on how elevated CO2 and/or O3 affect the below-ground processes in semi-natural vegetation, with an emphasis on greenhouse gases, N cycling and microbial communities. Meadow mesocosms mimicking lowland hay meadows in Jokioinen, SW Finland, were enclosed in open-top chambers and exposed to ambient and elevated levels of O3 (40-50 ppb) and/or CO2 (+100 ppm) for three consecutive growing season, while chamberless plots were used as chamber controls. Chemical and microbiological analyses as well as laboratory incubations of the mesocosm soils under different treatments were used to study the effects of O3 and/or CO2. Artificially constructed mesocosms were also compared with natural meadows with regards to GHG fluxes and soil characteristics. In addition to research conducted at the ecosystem level (i.e. the mesocosm study), soil microbial communities were also examined in a pot experiment with monocultures of individual species. By comparing mesocosms with similar natural plant assemblage, it was possible to demonstrate that artificial mesocosms simulated natural habitats, even though some differences were found in the CH4 oxidation rate, soil mineral N, and total C and N concentrations in the soil. After three growing seasons of fumigations, the fluxes of N2O, CH4, and CO2 were decreased in the NF+O3 treatment, and the soil NH4+-N and mineral N concentrations were lower in the NF+O3 treatment than in the NF control treatment. The mesocosm soil microbial communities were affected negatively by the NF+O3 treatment, as the total, bacterial, actinobacterial, and fungal PLFA biomasses as well as the fungal:bacterial biomass ratio decreased under elevated O3. In the pot survey, O3 decreased the total, bacterial, actinobacterial, and mycorrhizal PLFA biomasses in the bulk soil and affected the microbial community structure in the rhizosphere of L. pratensis, whereas the bulk soil and rhizosphere of the other monoculture, A. capillaris, remained unaffected by O3. Elevated CO2 caused only minor and insignificant changes in the GHG fluxes, N cycling, and the microbial community structure. In the present study, the below-ground processes were modified after three years of moderate O3 enhancement. A tentative conclusion is that a decrease in N availability may have feedback effects on plant growth and competition and affect the N cycling of the whole meadow ecosystem. Ecosystem level changes occur slowly, and multiplication of the responses might be expected in the long run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood-degrading fungi are able to degrade a large range of recalcitrant pollutants which resemble the lignin biopolymer. This ability is attributed to the production of lignin-modifying enzymes, which are extracellular and non-specific. Despite the potential of fungi in bioremediation, there is still an understanding gap in terms of the technology. In this thesis, the feasibility of two ex situ fungal bioremediation methods to treat contaminated soil was evaluated. Treatment of polycyclic aromatic hydrocarbons (PAHs)-contaminated marsh soil was studied in a stirred slurry-phase reactor. Due to the salt content in marsh soil, fungi were screened for their halotolerance, and the white-rot fungi Lentinus tigrinus, Irpex lacteus and Bjerkandera adusta were selected for further studies. These fungi degraded 40 - 60% of a PAH mixture (phenanthrene, fluoranthene, pyrene and chrysene) in a slurry-phase reactor (100 ml) during 30 days of incubation. Thereafter, B. adusta was selected to scale-up and optimize the process in a 5 L reactor. Maximum degradation of dibenzothiophene (93%), fluoranthene (82%), pyrene (81%) and chrysene (83%) was achieved with the free mycelium inoculum of the highest initial biomass (2.2 g/l). In autoclaved soil, MnP was the most important enzyme involved in PAH degradation. In non-sterile soil, endogenous soil microbes together with B. adusta also degraded the PAHs extensively, suggesting a synergic action between soil microbes and the fungus. A fungal solid-phase cultivation method to pretreat contaminated sawmill soil with high organic matter content was developed to enhance the effectiveness of the subsequent soil combustion. In a preliminary screening of 146 fungal strains, 28 out of 52 fungi, which extensively colonized non-sterile contaminated soil, were litter-decomposing fungi. The 18 strains further selected were characterized by their production of lignin-modifying and hydrolytic enzymes, of which MnP and endo-1,4-β-glucanase were the main enzymes during cultivation on Scots pine (Pinus sylvestris) bark. Of the six fungi selected for further tests, Gymnopilus luteofolius, Phanerochaete velutina, and Stropharia rugosoannulata were the most active soil organic matter degraders. The results showed that a six-month pretreatment of sawmill soil would result in a 3.5 - 9.5% loss of organic matter, depending on the fungus applied. The pretreatment process was scaled-up for a 0.56 m3 reactor, in which perforated plastic tubes filled with S. rugosoannulata growing on pine bark were introduced into the soil. The fungal pretreatment resulted in a soil mass loss of 30.5 kg, which represents 10% of the original soil mass (308 kg). Despite the fact that Scots pine bark contains several antimicrobial compounds, it was a suitable substrate for fungal growth and promoter of the production of oxidative enzymes, as well as an excellent and cheap natural carrier of fungal mycelium. This thesis successfully developed two novel fungal ex situ bioremediation technologies and introduce new insights for their further full-scale application. Ex situ slurry-phase fungal reactors might be applied in cases when the soil has a high water content or when the contaminant bioavailability is low; for example, in wastewater treatment plants to remove pharmaceutical residues. Fungal solid-phase bioremediation is a promising remediation technology to ex situ or in situ treat contaminated soil.