24 resultados para model order estimation
em Helda - Digital Repository of University of Helsinki
Resumo:
There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61º50' N, 24º22' E). In particular, a comparison of the results of different estimation methods was conducted to assess the reliability and suitability of their applications. For the trees in Mature-Stand, annual stem biomass increment fluctuated following a sigmoid equation, and the fitting curves reached a maximum level (from about 1 kg/yr for understorey spruce to 7 kg/yr for dominant pine) when the trees were 100 years old. Tree biomass was estimated to be about 70 Mg/ha in Young-Stand and about 220 Mg/ha in Mature-Stand. In the region (58.00-62.13 ºN, 14-34 ºE, ≤ 300 m a.s.l.) surrounding the study stands, the tree biomass accumulation in Norway spruce and Scots pine stands followed a sigmoid equation with stand age, with a maximum of 230 Mg/ha at the age of 140 years. In Mature-Stand, lichen biomass on the trees was 1.63 Mg/ha with more than half of the biomass occurring on dead branches, and the standing crop of litter lichen on the ground was about 0.09 Mg/ha. There were substantial differences among the results estimated by different methods in the stands. These results imply that a possible estimation error should be taken into account when calculating tree biomass in a stand with an indirect approach.
Resumo:
The use of remote sensing imagery as auxiliary data in forest inventory is based on the correlation between features extracted from the images and the ground truth. The bidirectional reflectance and radial displacement cause variation in image features located in different segments of the image but forest characteristics remaining the same. The variation has so far been diminished by different radiometric corrections. In this study the use of sun azimuth based converted image co-ordinates was examined to supplement auxiliary data extracted from digitised aerial photographs. The method was considered as an alternative for radiometric corrections. Additionally, the usefulness of multi-image interpretation of digitised aerial photographs in regression estimation of forest characteristics was studied. The state owned study area located in Leivonmäki, Central Finland and the study material consisted of five digitised and ortho-rectified colour-infrared (CIR) aerial photographs and field measurements of 388 plots, out of which 194 were relascope (Bitterlich) plots and 194 were concentric circular plots. Both the image data and the field measurements were from the year 1999. When examining the effect of the location of the image point on pixel values and texture features of Finnish forest plots in digitised CIR photographs the clearest differences were found between front-and back-lighted image halves. Inside the image half the differences between different blocks were clearly bigger on the front-lighted half than on the back-lighted half. The strength of the phenomenon varied by forest category. The differences between pixel values extracted from different image blocks were greatest in developed and mature stands and smallest in young stands. The differences between texture features were greatest in developing stands and smallest in young and mature stands. The logarithm of timber volume per hectare and the angular transformation of the proportion of broadleaved trees of the total volume were used as dependent variables in regression models. Five different converted image co-ordinates based trend surfaces were used in models in order to diminish the effect of the bidirectional reflectance. The reference model of total volume, in which the location of the image point had been ignored, resulted in RMSE of 1,268 calculated from test material. The best of the trend surfaces was the complete third order surface, which resulted in RMSE of 1,107. The reference model of the proportion of broadleaved trees resulted in RMSE of 0,4292 and the second order trend surface was the best, resulting in RMSE of 0,4270. The trend surface method is applicable, but it has to be applied by forest category and by variable. The usefulness of multi-image interpretation of digitised aerial photographs was studied by building comparable regression models using either the front-lighted image features, back-lighted image features or both. The two-image model turned out to be slightly better than the one-image models in total volume estimation. The best one-image model resulted in RMSE of 1,098 and the two-image model resulted in RMSE of 1,090. The homologous features did not improve the models of the proportion of broadleaved trees. The overall result gives motivation for further research of multi-image interpretation. The focus may be improving regression estimation and feature selection or examination of stratification used in two-phase sampling inventory techniques. Keywords: forest inventory, digitised aerial photograph, bidirectional reflectance, converted image coordinates, regression estimation, multi-image interpretation, pixel value, texture, trend surface
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Costs of purchasing new piglets and of feeding them until slaughter are the main variable expenditures in pig fattening. They both depend on slaughter intensity, the nature of feeding patterns and the technological constraints of pig fattening, such as genotype. Therefore, it is of interest to examine the effect of production technology and changes in input and output prices on feeding and slaughter decisions. This study examines the problem by using a dynamic programming model that links genetic characteristics of a pig to feeding decisions and the timing of slaughter and takes into account how these jointly affect the quality-adjusted value of a carcass. The model simulates the growth mechanism of a pig under optional feeding and slaughter patterns and then solves the optimal feeding and slaughter decisions recursively. The state of nature and the genotype of a pig are known in the analysis. The main contribution of this study is the dynamic approach that explicitly takes into account carcass quality while simultaneously optimising feeding and slaughter decisions. The method maximises the internal rate of return to the capacity unit. Hence, the results can have vital impact on competitiveness of pig production, which is known to be quite capital-intensive. The results suggest that producer can significantly benefit from improvements in the pig's genotype, because they improve efficiency of pig production. The annual benefits from obtaining pigs of improved genotype can be more than €20 per capacity unit. The annual net benefits of animal breeding to pig farms can also be considerable. Animals of improved genotype can reach optimal slaughter maturity quicker and produce leaner meat than animals of poor genotype. In order to fully utilise the benefits of animal breeding, the producer must adjust feeding and slaughter patterns on the basis of genotype. The results suggest that the producer can benefit from flexible feeding technology. The flexible feeding technology segregates pigs into groups according to their weight, carcass leanness, genotype and sex and thereafter optimises feeding and slaughter decisions separately for these groups. Typically, such a technology provides incentives to feed piglets with protein-rich feed such that the genetic potential to produce leaner meat is fully utilised. When the pig approaches slaughter maturity, the share of protein-rich feed in the diet gradually decreases and the amount of energy-rich feed increases. Generally, the optimal slaughter weight is within the weight range that pays the highest price per kilogram of pig meat. The optimal feeding pattern and the optimal timing of slaughter depend on price ratios. Particularly, an increase in the price of pig meat provides incentives to increase the growth rates up to the pig's biological maximum by increasing the amount of energy in the feed. Price changes and changes in slaughter premium can also have large income effects. Key words: barley, carcass composition, dynamic programming, feeding, genotypes, lean, pig fattening, precision agriculture, productivity, slaughter weight, soybeans
Resumo:
This study evaluates how the advection of precipitation, or wind drift, between the radar volume and ground affects radar measurements of precipitation. Normally precipitation is assumed to fall vertically to the ground from the contributing volume, and thus the radar measurement represents the geographical location immediately below. In this study radar measurements are corrected using hydrometeor trajectories calculated from measured and forecasted winds, and the effect of trajectory-correction on the radar measurements is evaluated. Wind drift statistics for Finland are compiled using sounding data from two weather stations spanning two years. For each sounding, the hydrometeor phase at ground level is estimated and drift distance calculated using different originating level heights. This way the drift statistics are constructed as a function of range from radar and elevation angle. On average, wind drift of 1 km was exceeded at approximately 60 km distance, while drift of 10 km was exceeded at 100 km distance. Trajectories were calculated using model winds in order to produce a trajectory-corrected ground field from radar PPI images. It was found that at the upwind side from the radar the effective measuring area was reduced as some trajectories exited the radar volume scan. In the downwind side areas near the edge of the radar measuring area experience improved precipitation detection. The effect of trajectory-correction is most prominent in instant measurements and diminishes when accumulating over longer time periods. Furthermore, measurements of intensive and small scale precipitation patterns benefit most from wind drift correction. The contribution of wind drift on the uncertainty of estimated Ze (S) - relationship was studied by simulating the effect of different error sources to the uncertainty in the relationship coefficients a and b. The overall uncertainty was assumed to consist of systematic errors of both the radar and the gauge, as well as errors by turbulence at the gauge orifice and by wind drift of precipitation. The focus of the analysis is error associated with wind drift, which was determined by describing the spatial structure of the reflectivity field using spatial autocovariance (or variogram). This spatial structure was then used with calculated drift distances to estimate the variance in radar measurement produced by precipitation drift, relative to the other error sources. It was found that error by wind drift was of similar magnitude with error by turbulence at gauge orifice at all ranges from radar, with systematic errors of the instruments being a minor issue. The correction method presented in the study could be used in radar nowcasting products to improve the estimation of visibility and local precipitation intensities. The method however only considers pure snow, and for operational purposes some improvements are desirable, such as melting layer detection, VPR correction and taking solid state hydrometeor type into account, which would improve the estimation of vertical velocities of the hydrometeors.
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.
Resumo:
The focus of this study is on statistical analysis of categorical responses, where the response values are dependent of each other. The most typical example of this kind of dependence is when repeated responses have been obtained from the same study unit. For example, in Paper I, the response of interest is the pneumococcal nasopharengyal carriage (yes/no) on 329 children. For each child, the carriage is measured nine times during the first 18 months of life, and thus repeated respones on each child cannot be assumed independent of each other. In the case of the above example, the interest typically lies in the carriage prevalence, and whether different risk factors affect the prevalence. Regression analysis is the established method for studying the effects of risk factors. In order to make correct inferences from the regression model, the associations between repeated responses need to be taken into account. The analysis of repeated categorical responses typically focus on regression modelling. However, further insights can also be gained by investigating the structure of the association. The central theme in this study is on the development of joint regression and association models. The analysis of repeated, or otherwise clustered, categorical responses is computationally difficult. Likelihood-based inference is often feasible only when the number of repeated responses for each study unit is small. In Paper IV, an algorithm is presented, which substantially facilitates maximum likelihood fitting, especially when the number of repeated responses increase. In addition, a notable result arising from this work is the freely available software for likelihood-based estimation of clustered categorical responses.
Resumo:
We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.
Resumo:
Malli on logiikassa käytetty abstraktio monille matemaattisille objekteille. Esimerkiksi verkot, ryhmät ja metriset avaruudet ovat malleja. Äärellisten mallien teoria on logiikan osa-alue, jossa tarkastellaan logiikkojen, formaalien kielten, ilmaisuvoimaa malleissa, joiden alkioiden lukumäärä on äärellinen. Rajoittuminen äärellisiin malleihin mahdollistaa tulosten soveltamisen teoreettisessa tietojenkäsittelytieteessä, jonka näkökulmasta logiikan kaavoja voidaan ajatella ohjelmina ja äärellisiä malleja niiden syötteinä. Lokaalisuus tarkoittaa logiikan kyvyttömyyttä erottaa toisistaan malleja, joiden paikalliset piirteet vastaavat toisiaan. Väitöskirjassa tarkastellaan useita lokaalisuuden muotoja ja niiden säilymistä logiikkoja yhdistellessä. Kehitettyjä työkaluja apuna käyttäen osoitetaan, että Gaifman- ja Hanf-lokaalisuudeksi kutsuttujen varianttien välissä on lokaalisuuskäsitteiden hierarkia, jonka eri tasot voidaan erottaa toisistaan kasvavaa dimensiota olevissa hiloissa. Toisaalta osoitetaan, että lokaalisuuskäsitteet eivät eroa toisistaan, kun rajoitutaan tarkastelemaan äärellisiä puita. Järjestysinvariantit logiikat ovat kieliä, joissa on käytössä sisäänrakennettu järjestysrelaatio, mutta sitä on käytettävä siten, etteivät kaavojen ilmaisemat asiat riipu valitusta järjestyksestä. Määritelmää voi motivoida tietojenkäsittelyn näkökulmasta: vaikka ohjelman syötteen tietojen järjestyksellä ei olisi odotetun tuloksen kannalta merkitystä, on syöte tietokoneen muistissa aina jossakin järjestyksessä, jota ohjelma voi laskennassaan hyödyntää. Väitöskirjassa tutkitaan minkälaisia lokaalisuuden muotoja järjestysinvariantit ensimmäisen kertaluvun predikaattilogiikan laajennukset yksipaikkaisilla kvanttoreilla voivat toteuttaa. Tuloksia sovelletaan tarkastelemalla, milloin sisäänrakennettu järjestys lisää logiikan ilmaisuvoimaa äärellisissä puissa.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Lignin is a hydrophobic polymer that is synthesised in the secondary cell walls of all vascular plants. It enables water conduction through the stem, supports the upright growth habit and protects against invading pathogens. In addition, lignin hinders the utilisation of the cellulosic cell walls of plants in pulp and paper industry and as forage. Lignin precursors are synthesised in the cytoplasm through the phenylpropanoid pathway, transported into the cell wall and oxidised by peroxidases or laccases to phenoxy radicals that couple to form the lignin polymer. This study was conducted to characterise the lignin biosynthetic pathway in Norway spruce (Picea abies (L.) Karst.). We focused on the less well-known polymerisation stage, to identify the enzymes and the regulatory mechanisms that are involved. Available data for lignin biosynthesis in gymnosperms is scarce and, for example, the latest improvements in precursor biosynthesis have only been verified in herbaceous plants. Therefore, we also wanted to study in detail the roles of individual gene family members during developmental and stress-induced lignification, using EST sequencing and real-time RT-PCR. We used, as a model, a Norway spruce tissue culture line that produces extracellular lignin into the culture medium, and showed that lignin polymerisation in the tissue culture depends on peroxidase activity. We identified in the culture medium a significant NADH oxidase activity that could generate H2O2 for peroxidases. Two basic culture medium peroxidases were shown to have high affinity to coniferyl alcohol. Conservation of the putative substrate-binding amino acids was observed when the spruce peroxidase sequences were compared with other peroxidases with high affinity to coniferyl alcohol. We also used different peroxidase fractions to produce synthetic in vitro lignins from coniferyl alcohol; however, the linkage pattern of the suspension culture lignin could not be reproduced in vitro with the purified peroxidases, nor with the full complement of culture medium proteins. This emphasised the importance of the precursor radical concentration in the reaction zone, which is controlled by the cells through the secretion of both the lignin precursors and the oxidative enzymes to the apoplast. In addition, we identified basic peroxidases that were reversibly bound to the lignin precipitate. They could be involved, for example, in the oxidation of polymeric lignin, which is required for polymer growth. The dibenzodioxocin substructure was used as a marker for polymer oxidation in the in vitro polymerisation studies, as it is a typical substructure in wood lignin and in the suspension culture lignin. Using immunolocalisation, we found the structure mainly in the S2+S3 layers of the secondary cell walls of Norway spruce tracheids. The structure was primarily formed during the late phases of lignification. Contrary to the earlier assumptions, it appears to be a terminal structure in the lignin macromolecule. Most lignin biosynthetic enzymes are encoded for by several genes, all of which may not participate in lignin biosynthesis. In order to identify the gene family members that are responsible for developmental lignification, ESTs were sequenced from the lignin-forming tissue culture and developing xylem of spruce. Expression of the identified lignin biosynthetic genes was studied using real-time RT-PCR. Candidate genes for developmental lignification were identified by a coordinated, high expression of certain genes within the gene families in all lignin-forming tissues. However, such coordinated expression was not found for peroxidase genes. We also studied stress-induced lignification either during compression wood formation by bending the stems or after Heterobasidion annosum infection. Based on gene expression profiles, stress-induced monolignol biosynthesis appeared similar to the developmental process, and only single PAL and C3H genes were specifically up-regulated by stress. On the contrary, the up-regulated peroxidase genes differed between developmental and stress-induced lignification, indicating specific responses.
Resumo:
The rupture of a cerebral artery aneurysm causes a devastating subarachnoid hemorrhage (SAH), with a mortality of almost 50% during the first month. Each year, 8-11/100 000 people suffer from aneurysmal SAH in Western countries, but the number is twice as high in Finland and Japan. The disease is most common among those of working age, the mean age at rupture being 50-55 years. Unruptured cerebral aneurysms are found in 2-6% of the population, but knowledge about the true risk of rupture is limited. The vast majority of aneurysms should be considered rupture-prone, and treatment for these patients is warranted. Both unruptured and ruptured aneurysms can be treated by either microsurgical clipping or endovascular embolization. In a standard microsurgical procedure, the neck of the aneurysm is closed by a metal clip, sealing off the aneurysm from the circulation. Endovascular embolization is performed by packing the aneurysm from the inside of the vessel lumen with detachable platinum coils. Coiling is associated with slightly lower morbidity and mortality than microsurgery, but the long-term results of microsurgically treated aneurysms are better. Endovascular treatment methods are constantly being developed further in order to achieve better long-term results. New coils and novel embolic agents need to be tested in a variety of animal models before they can be used in humans. In this study, we developed an experimental rat aneurysm model and showed its suitability for testing endovascular devices. We optimized noninvasive MRI sequences at 4.7 Tesla for follow-up of coiled experimental aneurysms and for volumetric measurement of aneurysm neck remnants. We used this model to compare platinum coils with polyglycolic-polylactic acid (PGLA) -coated coils, and showed the benefits of the latter in this model. The experimental aneurysm model and the imaging methods also gave insight into the mechanisms involved in aneurysm formation, and the model can be used in the development of novel imaging techniques. This model is affordable, easily reproducible, reliable, and suitable for MRI follow-up. It is also suitable for endovascular treatment, and it evades spontaneous occlusion.
Resumo:
Numerical weather prediction (NWP) models provide the basis for weather forecasting by simulating the evolution of the atmospheric state. A good forecast requires that the initial state of the atmosphere is known accurately, and that the NWP model is a realistic representation of the atmosphere. Data assimilation methods are used to produce initial conditions for NWP models. The NWP model background field, typically a short-range forecast, is updated with observations in a statistically optimal way. The objective in this thesis has been to develope methods in order to allow data assimilation of Doppler radar radial wind observations. The work has been carried out in the High Resolution Limited Area Model (HIRLAM) 3-dimensional variational data assimilation framework. Observation modelling is a key element in exploiting indirect observations of the model variables. In the radar radial wind observation modelling, the vertical model wind profile is interpolated to the observation location, and the projection of the model wind vector on the radar pulse path is calculated. The vertical broadening of the radar pulse volume, and the bending of the radar pulse path due to atmospheric conditions are taken into account. Radar radial wind observations are modelled within observation errors which consist of instrumental, modelling, and representativeness errors. Systematic and random modelling errors can be minimized by accurate observation modelling. The impact of the random part of the instrumental and representativeness errors can be decreased by calculating spatial averages from the raw observations. Model experiments indicate that the spatial averaging clearly improves the fit of the radial wind observations to the model in terms of observation minus model background (OmB) standard deviation. Monitoring the quality of the observations is an important aspect, especially when a new observation type is introduced into a data assimilation system. Calculating the bias for radial wind observations in a conventional way can result in zero even in case there are systematic differences in the wind speed and/or direction. A bias estimation method designed for this observation type is introduced in the thesis. Doppler radar radial wind observation modelling, together with the bias estimation method, enables the exploitation of the radial wind observations also for NWP model validation. The one-month model experiments performed with the HIRLAM model versions differing only in a surface stress parameterization detail indicate that the use of radar wind observations in NWP model validation is very beneficial.