10 resultados para mode conversion
em Helda - Digital Repository of University of Helsinki
Resumo:
Poetics of Awakenings. Genres and Intertexts in Arvid Järnefelt s Novels Isänmaa, Maaemon lapsia and Veneh ojalaiset This doctoral dissertation focuses on Arvid Järnefelt s (1961 1932) novels Isänmaa (1893), Maaemon lapsia (1905) and Veneh ojalaiset (1909). The study applies the genre theory and concepts Alastair Fowler has introduced in his Kinds of Literature (1982). Fowler s theory of the novel is developed further and applied to Finnish realist novels. The generic analysis is supplemented by intertextual analysis, which is mainly based on the idea of specific intertextual relations as presented by Kiril Taranovsky. Generic and intertextual analyses form the basis for hermeneutic interpretation, in which attention is paid to the fact that the novels are written by the designated writer in specific historical and cultural circumstances. Instead of the author s intention , the study focuses on the realised intention , in other words the novels as they are published. Järnefelt s first novel Isänmaa is understood to be a classical Bidungsroman that depicts the socialisation of a young male protagonist. From an intertextual point of view, the novel appears to be a novel of conversion, too, due to the biblical allusions concealed in the depiction of the events. Furthermore, Isänmaa is seen to stand in an intertextual relation to Hegel s, Snellman s and Topelius s writings. Maaemon lapsia is argued to be a thesis novel, which persuades the reader to adopt a certain ideological and political stance, namely Henry George s view on the private ownership of land. The novel is modulated by the generic repertoires of fairy tale and tragedy. The mythical frame of the novel supports the thesis novel, as it gives universal validity to the particular events depicted in the novel. Maaemon lapsia also comments on the contemporary political debate on the relations between Finland and Russia by presenting the relationship as analogous to the relationship between tenant farmer and landowner. Veneh ojalaiset exhibits a wide range of genres. Comic, tragic and mythical mode is combined with, for example, family novel, romance, conversion novel and revolutionary novel. From a rhetorical viewpoint, the novel is an apology, which accuses society of generating criminality by means of unjust laws and procedures. The novel discusses the question of resistance to evil by using the themes of Faust and Job, as well as by confronting the philosophies of Epictetus and Nietzsche. The novel is a thesis novel, which disputes the possibility of violent revolution as a way to a better society and recommends passive resistance for an individual living in an unjust society. The poetics of Järnefelt s novels is regarded as the poetics of conversion, as all the novels in focus depict the protagonist s awakening to see the society in a new light, be it a patriotic vision of the reality or a conception of the unfairness of society.
Resumo:
The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.
Resumo:
There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.
Resumo:
Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiälä, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiälä were highest in continental air masses, arriving at Hyytiälä from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the next front reached Hyytiälä. The frequency of aerosol particle formation relates to the frequency of low-cloud-amount days in Hyytiälä. Cloudiness of less than 5 octas is one of the factors favouring new particle formation. Cloudiness above 4 octas appears to be an important factor that prevents particle growth, due to the decrease of solar radiation, which is one of the important meteorological parameters in atmospheric particle formation and growth. Keywords: Atmospheric aerosols, particle formation, air mass, atmospheric front, cloudiness
Resumo:
We combine searches by the CDF and D0 collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb-1 of p-pbar collisions at sqrt{s}=1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard-model Higgs boson in the mass range 162-166 GeV at the 95% C.L.
Resumo:
We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.