3 resultados para mistimed covariates

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In clinical settings impulsivity refers to a symptom of psychiatric disorder, but nonclinically oriented research treats impulsivity as a personality and temperament dimension. This prospective study examined whether impulsivity predicts adverse health-related behaviour and increased risk of health problems in a large, nonclinical sample of 5433 subjects working in 12 Finnish hospitals. The data were collected using two questionnaire surveys at a 2-year interval. After controlling for alcohol use at baseline, higher impulsivity predicted increased alcohol consumption at follow-up in both genders (p < .01) and was associated with increased likelihood of becoming a heavy drinker or taking up smoking (p < .05). Impulsivity also predicted an increased number of cigarettes smoked per day in the follow-up among women (p < .001), but not among men, although adjustment for the number of cigarettes smoked at baseline attenuated these associations (p = .08 for women). In men, higher impulsivity was associated with shorter sleep duration and waking up several times per night independent of baseline characteristics (p < .01), whereas in women, higher impulsivity predicted difficulty in falling asleep and waking up feeling tired after the usual amount of sleep (p < .05). In women, these associations became nonsignificant after adjustment for pre-existing somatic and psychiatric diseases. Finally, higher impulsivity was associated with an increased 2-year incidence of physician-diagnosed peptic ulcer disease (adjusted odds ratio (OR) = 2.42, 95% confidence interval (CI) = 1.21 - 4.82) and onset of depression (OR = 1.95, 95% CI = 1.28 - 2.97) after adjustment for a variety of baseline covariates. In conclusion, this study shows that in a nonclinical population, impulsivity appears to be a risk factor for various unhealthy behaviour and health problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclosporine is an immunosuppressant drug with a narrow therapeutic index and large variability in pharmacokinetics. To improve cyclosporine dose individualization in children, we used population pharmacokinetic modeling to study the effects of developmental, clinical, and genetic factors on cyclosporine pharmacokinetics in altogether 176 subjects (age range: 0.36–20.2 years) before and up to 16 years after renal transplantation. Pre-transplantation test doses of cyclosporine were given intravenously (3 mg/kg) and orally (10 mg/kg), on separate occasions, followed by blood sampling for 24 hours (n=175). After transplantation, in a total of 137 patients, cyclosporine concentration was quantified at trough, two hours post-dose, or with dose-interval curves. One-hundred-four of the studied patients were genotyped for 17 putatively functionally significant sequence variations in the ABCB1, SLCO1B1, ABCC2, CYP3A4, CYP3A5, and NR1I2 genes. Pharmacokinetic modeling was performed with the nonlinear mixed effects modeling computer program, NONMEM. A 3-compartment population pharmacokinetic model with first order absorption without lag-time was used to describe the data. The most important covariate affecting systemic clearance and distribution volume was allometrically scaled body weight i.e. body weight**3/4 for clearance and absolute body weight for volume of distribution. The clearance adjusted by absolute body weight declined with age and pre-pubertal children (< 8 years) had an approximately 25% higher clearance/body weight (L/h/kg) than did older children. Adjustment of clearance for allometric body weight removed its relationship to age after the first year of life. This finding is consistent with a gradual reduction in relative liver size towards adult values, and a relatively constant CYP3A content in the liver from about 6–12 months of age to adulthood. The other significant covariates affecting cyclosporine clearance and volume of distribution were hematocrit, plasma cholesterol, and serum creatinine, explaining up to 20%–30% of inter-individual differences before transplantation. After transplantation, their predictive role was smaller, as the variations in hematocrit, plasma cholesterol, and serum creatinine were also smaller. Before transplantation, no clinical or demographic covariates were found to affect oral bioavailability, and no systematic age-related changes in oral bioavailability were observed. After transplantation, older children receiving cyclosporine twice daily as the gelatine capsule microemulsion formulation had an about 1.25–1.3 times higher bioavailability than did the younger children receiving the liquid microemulsion formulation thrice daily. Moreover, cyclosporine oral bioavailability increased over 1.5-fold in the first month after transplantation, returning thereafter gradually to its initial value in 1–1.5 years. The largest cyclosporine doses were administered in the first 3–6 months after transplantation, and thereafter the single doses of cyclosporine were often smaller than 3 mg/kg. Thus, the results suggest that cyclosporine displays dose-dependent, saturable pre-systemic metabolism even at low single doses, whereas complete saturation of CYP3A4 and MDR1 (P-glycoprotein) renders cyclosporine pharmacokinetics dose-linear at higher doses. No significant associations were found between genetic polymorphisms and cyclosporine pharmacokinetics before transplantation in the whole population for which genetic data was available (n=104). However, in children older than eight years (n=22), heterozygous and homozygous carriers of the ABCB1 c.2677T or c.1236T alleles had an about 1.3 times or 1.6 times higher oral bioavailability, respectively, than did non-carriers. After transplantation, none of the ABCB1 SNPs or any other SNPs were found to be associated with cyclosporine clearance or oral bioavailability in the whole population, in the patients older than eight years, or in the patients younger than eight years. In the whole population, in those patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055C haplotype, however, the bioavailability of cyclosporine was about one tenth lower, per allele, than in non-carriers. This effect was significant also in a subgroup of patients older than eight years. Furthermore, in patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055T haplotype, the bioavailability was almost one fifth higher, per allele, than in non-carriers. It may be possible to improve individualization of cyclosporine dosing in children by accounting for the effects of developmental factors (body weight, liver size), time after transplantation, and cyclosporine dosing frequency/formulation. Further studies are required on the predictive value of genotyping for individualization of cyclosporine dosing in children.