10 resultados para mcl 1 gene

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stanniocalcin-1 (STC-1) is a 56 kD homodimeric protein which was originally identified in bony fish, where it regulates calcium/phosphate homeostasis and protects against toxic hypercalcemia. STC-1 was considered unique to fish until the cloning of cDNA for human STC-1 in 1995 and mouse Stc-1 in 1996. STC-1 is conserved through evolution with human and salmon STC-1 sharing 60% identity and 80% similarity. The surprisingly high homology between mammalian and fish STC-1 and the protective actions of STC-1 in terminally differentiated neurons, originally reported by my colleagues, prompted me to further study the role of STC-1 in cell stress and differentiation. One purpose was to determine whether there is an inter-relationship between terminally differentiated cells and STC-1 expression. The study revealed an accumulation of STC-1 in mature megakaryocytes and adipocytes, i.e. postmitotic cells with limited or lost proliferative capacity. Still proliferating uninduced cells were negative for STC-1 mRNA and protein, whereas differentiating cells accumulated STC-1 in their cytoplasm. Interestingly, in liposarcomas the grade inversely correlated with STC-1 expression. Another aim was to study how STC-1 gene expression is regulated. Given that IL-6 is a cytokine with neuroprotective actions, by unknown mechanisms, we examined whether IL-6 regulates STC-1 gene expression. Treatment of human neural Paju cells with IL-6 induced a dose-dependent upregulation of STC-1 mRNA levels. This induction of STC-1 expression by IL-6 occurred mainly through the MAPK signaling pathway. Furthermore, I studied the role of IL-6-mediated STC-1 expression as a mechanism of cytoprotection conferred by hypoxic preconditioning (HOPC) in brain and heart. My findings show that Stc-1 was upregulated in brain after hypoxia treatment. In the brain of IL-6 deficient mice, however, no upregulation of Stc-1 expression was evident. After induced brain injury the STC-1 response in brains of IL-6 transgenic mice, with IL-6 overexpression in astroglial cells, was stronger than in brains of WT mice. These results indicate that IL-6-mediated expression of STC-1 is one molecular mechanism of HOPC-induced tolerance to brain ischemia. The protection conferred by HOPC in heart occurs during a bimodal time course comprising early and delayed preconditioning. Interestingly, my results showed that the expression of Stc-1 in heart was upregulated in a biphasic manner during HOPC. IL-6 deficient mice did not, however, show a similar biphasic manner of Stc-1 upregulation as did WT mice. Instead, only an early upregulation of Stc-1 expression was evident. The results suggest that the upregulation of Stc-1 during the delayed preconditioning is IL-6-dependent. The upregulated expression of Stc-1 during the early preconditioning, however, is only partly IL-6-dependent and possibly also directly mediated by HIF-1. These findings suggest that STC-1 is a pro-survival protein for terminally differentiated cells and that STC-1 expression may in fact be regulated by stress. In addition, I show that STC-1 gene upregulation, mediated in part by IL-6, is a new mechanism of protection conferred by HOPC in brain and heart. Because of its importance for fundamental biological processes, such as differentiation and cytoprotection, STC-1 may have therapeutic implications for management of stroke, neurodegenerative diseases, cancer, and obesity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

According to the models conceptualizing work stress, increased risk of health problems arise when high job demands co-occur with low job control (the demand-control model) or the efforts invested by the employee are disproportionately high compared to the rewards received (effort-reward imbalance model). This study examined the association between work stress and early atherosclerosis with particular attention to the role of pre-employment risk factors and genetic background in this association. The subjects were young healthy adults aged 24-39 who were participating in the 21-year follow-up of the ongoing prospective "Cardiovascular Risk in Young Finns" study in 2001-2002. Work stress was evaluated with questionnaires on demand-control model and on effort-reward model. Atherosclerosis was assessed with ultrasound of carotid artery intima-media thickness (IMT). In addition, risk for enhanced atherosclerotic process was assessed by measuring with heart rate variability and heart rate. Pre-employment risk factors, measured at age 12 to 18, included such as body mass index, blood lipids, family history of coronary heart disease, and parental socioeconomic position. Variants of the neuregulin-1 were determined using genomic DNA. The results showed that higher work stress was associated with higher IMT in men. This association was not attenuated by traditional risk factors of atherosclerosis and coronary heart disease or by pre-employment risk factors measured in adolescence. Neuregulin-1 gene moderated the association between work stress and IMT in men. A significant association between work stress and IMT was found only for the T/T genotype of the neuregulin-1 gene but not for other genotypes. Among women an association was found between higher work stress and lower heart rate variability, suggesting higher risk for developing atherosclerosis. These associations could not be explained by demographic characteristics or coronary risk factors. The present findings provide evidence for an association between work stress and atherosclerosis in relatively young population. This association seems to be modified by genetic influences but it does not appear to be confounded by pre-employment adolescent risk factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessment of the outcome of critical illness is complex. Severity scoring systems and organ dysfunction scores are traditional tools in mortality and morbidity prediction in intensive care. Their ability to explain risk of death is impressive for large cohorts of patients, but insufficient for an individual patient. Although events before intensive care unit (ICU) admission are prognostically important, the prediction models utilize data collected at and just after ICU admission. In addition, several biomarkers have been evaluated to predict mortality, but none has proven entirely useful in clinical practice. Therefore, new prognostic markers of critical illness are vital when evaluating the intensive care outcome. The aim of this dissertation was to investigate new measures and biological markers of critical illness and to evaluate their predictive value and association with mortality and disease severity. The impact of delay in emergency department (ED) on intensive care outcome, measured as hospital mortality and health-related quality of life (HRQoL) at 6 months, was assessed in 1537 consecutive patients admitted to medical ICU. Two new biological markers were investigated in two separate patient populations: in 231 ICU patients and 255 patients with severe sepsis or septic shock. Cell-free plasma DNA is a surrogate marker of apoptosis. Its association with disease severity and mortality rate was evaluated in ICU patients. Next, the predictive value of plasma DNA regarding mortality and its association with the degree of organ dysfunction and disease severity was evaluated in severe sepsis or septic shock. Heme oxygenase-1 (HO-1) is a potential regulator of apoptosis. Finally, HO-1 plasma concentrations and HO-1 gene polymorphisms and their association with outcome were evaluated in ICU patients. The length of ED stay was not associated with outcome of intensive care. The hospital mortality rate was significantly lower in patients admitted to the medical ICU from the ED than from the non-ED, and the HRQoL in the critically ill at 6 months was significantly lower than in the age- and sex-matched general population. In the ICU patient population, the maximum plasma DNA concentration measured during the first 96 hours in intensive care correlated significantly with disease severity and degree of organ failure and was independently associated with hospital mortality. In patients with severe sepsis or septic shock, the cell-free plasma DNA concentrations were significantly higher in ICU and hospital nonsurvivors than in survivors and showed a moderate discriminative power regarding ICU mortality. Plasma DNA was an independent predictor for ICU mortality, but not for hospital mortality. The degree of organ dysfunction correlated independently with plasma DNA concentration in severe sepsis and plasma HO-1 concentration in ICU patients. The HO-1 -413T/GT(L)/+99C haplotype was associated with HO-1 plasma levels and frequency of multiple organ dysfunction. Plasma DNA and HO-1 concentrations may support the assessment of outcome or organ failure development in critically ill patients, although their value is limited and requires further evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute pancreatitis (AP) is a common disease. Mild disease resolves spontaneously in a few days. Severe forms of the disease can lead to local complications, necrosis, and abscesses in and around the pancreas. Systemic inflammation in severe AP is associated with distant organ failures. The aim of this study is to identify genetically determined prognostic factors involved in the clinical features of AP. The study employs a candidate-gene approach, and the genes are involved in trysinogen activation in the initiation phase of the disease, as well as in the systemic inflammation as the disease proceeds. The last study examines adipokines, fat-derived hormones characterized with the capacity to modify inflammation. SPINK 1 is a gene coding trypsin activation inhibitor. Mutations N34S and P55N were determined by minisequencing methods in 371 AP patients and in 459 controls. The mutation N34S was more common in AP patients (7.8%) than in controls (2.6%). This suggests that SPINK 1 gene mutation N34S is a risk factor for AP. In the fourth study, in 12 matched pairs of patients with severe and mild AP, levels of adipokines, adiponectin, and leptin were evaluated. Plasma adipokine levels did not differ between patients with mild and severe AP. The results suggest that in AP, adipokine plasma levels are not factors predisposing to organ failures. This study identified the SPINK 1 mutation N34S to be a risk factor for AP in the general population. As AP is a multifactorial disease, and extensive genetic heterogeneity is likely, further identification of genetic factors in the disease requires larger future studies with more advanced genetic study models. Further identification of the patient characteristics associated with organ failures offers another direction of the study to achieve more detailed understanding of the severe form of AP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this work was to identify some of the genes of the catabolic route of L-rhamnose in the yeast Pichia stipitis. There are at least two distinctly different pathways for L-rhamnose catabolism. The one described in bacteria has phosphorylated intermediates and the enzymes and the genes of this route have been described. The pathway described in yeast does not have phosphorylated intermediates. The intermediates and the enzymes of this pathway are known but none of the genes have been identified. The work was started by purifying the L-rhamnose dehydrogenase, which oxidates L-rhamnose to rhamnonic acid-gamma-lactone. NAD is used as a cofactor in this reaction. A DEAE ion exchange column was used for purification. The active fraction was further purified using a non-denaturing PAGE and the active protein identified by zymogram staining. In the last step the protein was separated in a SDS-PAGE, the protein band trypsinated and analysed by MALDI-TOF MS. This resulted in the identification of the corresponding gene, RHA1, which was then, after a codon change, expressed in Saccharomyces cerevisiae. Also C- or N-terminal histidine tags were added but as the activity of the enzyme was lost or strongly reduced these were not used. The kinetic properties of the protein were analysed in the cell extract. Substrate specifity was tested with different sugars; L-rhamnose, L-lyxose and L-mannose were oxidated by the enzyme. Vmax values were 180 nkat/mg, 160 nkat/mg and 72 nkat/mg, respectively. The highest affinity was towards L-rhamnose, the Km value being 0.9 mM. Lower affinities were obtained with L-lyxose, Km 4.3 mM, and L-mannose Km 25 mM. Northern analysis was done to study the transcription of RHA1 with different carbon sources. Transcription was observed only on L-rhamnose suggesting that RHA1 expression is L-rhamnose induced. A RHA1 deletion cassette for P. stipitis was constructed but the cassette had integrated randomly and not targeted to delete the RHA1 gene. Enzyme assays for L-lactaldehyde dehydrogenase were done similarly to L-rhamnose dehydrogenase assays. NAD is used as a cofactor also in this reaction where L-lactaldehyde is oxidised to L-lactate. The observed enzyme activities were very low and the activity was lost during the purification procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of midbrain dopamine systems is thought to be critically involved in the addictive properties of abused substances. Drugs of abuse increase dopamine release in the nucleus accumbens and dorsal striatum, which are the target areas of mesolimbic and nigrostriatal dopamine pathways, respectively. Dopamine release in the nucleus accumbens is thought to mediate the attribution of incentive salience to rewards, and dorsal striatal dopamine release is involved in habit formation. In addition, changes in the function of prefrontal cortex (PFC), the target area of mesocortical dopamine pathway, may skew information processing and memory formation such that the addict pays an abnormal amount of attention to drug-related cues. In this study, we wanted to explore how long-term forced oral nicotine exposure or the lack of catechol-O-methyltransferase (COMT), one of the dopamine metabolizing enzymes, would affect the functioning of these pathways. We also wanted to find out how the forced nicotine exposure or the lack of COMT would affect the consumption of nicotine, alcohol, or cocaine. First, we studied the effect of forced chronic nicotine exposure on the sensitivity of dopamine D2-like autoreceptors in microdialysis and locomotor activity experiments. We found that the sensitivity of these receptors was unchanged after forced oral nicotine exposure, although an increase in the sensitivity was observed in mice treated with intermittent nicotine injections twice daily for 10 days. Thus, the effect of nicotine treatment on dopamine autoreceptor sensitivity depends on the route, frequency, and time course of drug administration. Second, we investigated whether the forced oral nicotine exposure would affect the reinforcing properties of nicotine injections. The chronic nicotine exposure did not significantly affect the development of conditioned place preference to nicotine. In the intravenous self-administration paradigm, however, the nicotine-exposed animals self-administered nicotine at a lower unit dose than the control animals, indicating that their sensitivity to the reinforcing effects of nicotine was enhanced. Next, we wanted to study whether the Comt gene knock-out animals would be a suitable model to study alcohol and cocaine consumption or addiction. Although previous work had shown male Comt knock-out mice to be less sensitive to the locomotor-activating effects of cocaine, the present study found that the lack of COMT did not affect the consumption of cocaine solutions or the development of cocaine-induced place preference. However, the present work did find that male Comt knock-out mice, but not female knock-out mice, consumed ethanol more avidly than their wild-type littermates. This finding suggests that COMT may be one of the factors, albeit not a primary one, contributing to the risk of alcoholism. Last, we explored the effect of COMT deficiency on dorsal striatal, accumbal, and prefrontal cortical dopamine metabolism under no-net-flux conditions and under levodopa load in freely-moving mice. The lack of COMT did not affect the extracellular dopamine concentrations under baseline conditions in any of the brain areas studied. In the prefrontal cortex, the dopamine levels remained high for a prolonged time after levodopa treatment in male, but not female, Comt knock-out mice. COMT deficiency induced accumulation of 3,4-dihydroxyphenylacetic acid, which increased further under levodopa load. Homovanillic acid was not detectable in Comt knock-out animals either under baseline conditions or after levodopa treatment. Taken together, the present results show that although forced chronic oral nicotine exposure affects the reinforcing properties of self-administered nicotine, it is not an addiction model itself. COMT seems to play a minor role in dopamine metabolism and in the development of addiction under baseline conditions, indicating that dopamine function in the brain is well-protected from perturbation. However, the role of COMT becomes more important when the dopaminergic system is challenged, such as by pharmacological manipulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.