2 resultados para liquid metal diffusion
em Helda - Digital Repository of University of Helsinki
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
This dissertation deals with the design, fabrication, and applications of microscale electrospray ionization chips for mass spectrometry. The microchip consists of microchannel, which leads to a sharp electrospray tip. Microchannel contain micropillars that facilitate a powerful capillary action in the channels. The capillary action delivers the liquid sample to the electrospray tip, which sprays the liquid sample to gas phase ions that can be analyzed with mass spectrometry. The microchip uses a high voltage, which can be utilized as a valve between the microchip and mass spectrometry. The microchips can be used in various applications, such as for analyses of drugs, proteins, peptides, or metabolites. The microchip works without pumps for liquid transfer, is usable for rapid analyses, and is sensitive. The characteristics of performance of the single microchips are studied and a rotating multitip version of the microchips are designed and fabricated. It is possible to use the microchip also as a microreactor and reaction products can be detected online with mass spectrometry. This property can be utilized for protein identification for example. Proteins can be digested enzymatically on-chip and reaction products, which are in this case peptides, can be detected with mass spectrometry. Because reactions occur faster in a microscale due to shorter diffusion lengths, the amount of protein can be very low, which is a benefit of the method. The microchip is well suited to surface activated reactions because of a high surface-to-volume ratio due to a dense micropillar array. For example, titanium dioxide nanolayer on the micropillar array combined with UV radiation produces photocatalytic reactions which can be used for mimicking drug metabolism biotransformation reactions. Rapid mimicking with the microchip eases the detection of possibly toxic compounds in preclinical research and therefore could speed up the research of new drugs. A micropillar array chip can also be utilized in the fabrication of liquid chromatographic columns. Precisely ordered micropillar arrays offer a very homogenous column, where separation of compounds has been demonstrated by using both laser induced fluorescence and mass spectrometry. Because of small dimensions on the microchip, the integrated microchip based liquid chromatography electrospray microchip is especially well suited to low sample concentrations. Overall, this work demonstrates that the designed and fabricated silicon/glass three dimensionally sharp electrospray tip is unique and facilitates stable ion spray for mass spectrometry.