2 resultados para lidocaine

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lidocaine is a widely used local anaesthetic agent that also has anti-arrhythmic effects. It is classified as a type Ib anti-arrhythmic agent and is used to treat ventricular tachycardia or ventricular fibrillation. Lidocaine is eliminated mainly by metabolism, and less than 5% is excreted unchanged in urine. Lidocaine is a drug with a medium to high extraction ratio, and its bioavailability is about 30%. Based on in vitro studies, the earlier understanding was that CYP3A4 is the major cytochrome P450 (CYP) enzyme involved in the metabolism of lidocaine. When this work was initiated, there was little human data on the effect of inhibitors of CYP enzymes on the pharmacokinetics of lidocaine. Because lidocaine has a low therapeutic index, medications that significantly inhibit lidocaine clearance (CL) could increase the risk of toxicity. These studies investigated the effects of some clinically important CYP1A2 and CYP3A4 inhibitors on the pharmacokinetics of lidocaine administered by different routes. All of the studies were randomized, double-blind, placebo-controlled cross-over studies in two or three phases in healthy volunteers. Pretreatment with clinically relevant doses of CYP3A4 inhibitors erythromycin and itraconazole or CYP1A2 inhibitors fluvoxamine and ciprofloxacin was followed by a single dose of lidocaine. Blood samples were collected to determine the pharmacokinetic parameters of lidocaine and its main metabolites monoethylglycinexylidide (MEGX) and 3-hydroxylidocaine (3-OH-lidocaine). Itraconazole and erythromycin had virtually no effect on the pharmacokinetics of intravenous lidocaine, but erythromycin slightly prolonged the elimination half-life (t½) of lidocaine (Study I). When lidocaine was taken orally, both erythromycin and itraconazole increased the peak concentration (Cmax) and the area under the concentration-time curve (AUC) of lidocaine by 40-70% (Study II). Compared with placebo and itraconazole, erythromycin increased the Cmax and the AUC of MEGX by 40-70% when lidocaine was given intravenously or orally (Studies I and II). The pharmacokinetics of inhaled lidocaine was unaffected by concomitant administration of itraconazole (Study III). Fluvoxamine reduced the CL of intravenous lidocaine by 41% and prolonged the t½ of lidocaine by 35%. The mean AUC of lidocaine increased 1.7-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine in-creased 3-fold and the Cmax 2.2-fold by fluvoxamine (Study V). During the pretreatment with fluvoxamine combined with erythromycin, the CL of intravenous lidocaine was 53% smaller than during placebo and 21% smaller than during fluvoxamine alone. The t½ of lidocaine was significantly longer during the combination phase than during the placebo or fluvoxamine phase. The mean AUC of intravenous lidocaine increased 2.3-fold and the Cmax 1.4-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine increased 3.6-fold and the Cmax 2.5-fold by concomitant fluvoxamine and erythromycin. The t½ of oral lidocaine was significantly longer during the combination phase than during the placebo (Study V). When lidocaine was given intravenously, the combination of fluvoxamine and erythromycin prolonged the t½ of MEGX by 59% (Study IV). Compared with placebo, ciprofloxacin increased the mean Cmax and AUC of intravenous lidocaine by 12% and 26%, respectively. The mean plasma CL of lidocaine was reduced by 22% and its t½ prolonged by 7% (Study VI). These studies clarify the principal role of CYP1A2 and suggest only a modest role of CYP3A4 in the elimination of lidocaine in vivo. The inhibition of CYP1A2 by fluvoxamine considerably reduces the elimination of lidocaine. Concomitant use of fluvoxamine and the CYP3A4 inhibitor erythromycin further increases lidocaine concentrations. The clinical implication of this work is that clinicians should be aware of the potentially increased toxicity of lidocaine when used together with inhibitors of CYP1A2 and particularly with the combination of drugs inhibiting both CYP1A2 and CYP3A4 enzymes.