3 resultados para interactive proofs

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monograph describes the emergence of independent research on logic in Finland. The emphasis is placed on three well-known students of Eino Kaila: Georg Henrik von Wright (1916-2003), Erik Stenius (1911-1990), and Oiva Ketonen (1913-2000), and their research between the early 1930s and the early 1950s. The early academic work of these scholars laid the foundations for today's strong tradition in logic in Finland and also became internationally recognized. However, due attention has not been given to these works later, nor have they been comprehensively presented together. Each chapter of the book focuses on the life and work of one of Kaila's aforementioned students, with a fourth chapter discussing works on logic by authors who would later become known within other disciplines. Through an extensive use of correspondence and other archived material, some insight has been gained into the persons behind the academic personae. Unique and unpublished biographical material has been available for this task. The chapter on Oiva Ketonen focuses primarily on his work on what is today known as proof theory, especially on his proof theoretical system with invertible rules that permits a terminating root-first proof search. The independency of the parallel postulate is proved as an example of the strength of root-first proof search. Ketonen was to our knowledge Gerhard Gentzen's (the 'father' of proof theory) only student. Correspondence and a hitherto unavailable autobiographic manuscript, in addition to an unpublished article on the relationship between logic and epistemology, is presented. The chapter on Erik Stenius discusses his work on paradoxes and set theory, more specifically on how a rigid theory of definitions is employed to avoid these paradoxes. A presentation by Paul Bernays on Stenius' attempt at a proof of the consistency of arithmetic is reconstructed based on Bernays' lecture notes. Stenius correspondence with Paul Bernays, Evert Beth, and Georg Kreisel is discussed. The chapter on Georg Henrik von Wright presents his early work on probability and epistemology, along with his later work on modal logic that made him internationally famous. Correspondence from various archives (especially with Kaila and Charlie Dunbar Broad) further discusses his academic achievements and his experiences during the challenging circumstances of the 1940s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies decision problems from the perspective of nondeterministic distributed algorithms. For a yes-instance there must exist a proof that can be verified with a distributed algorithm: all nodes must accept a valid proof, and at least one node must reject an invalid proof. We focus on locally checkable proofs that can be verified with a constant-time distributed algorithm. For example, it is easy to prove that a graph is bipartite: the locally checkable proof gives a 2-colouring of the graph, which only takes 1 bit per node. However, it is more difficult to prove that a graph is not bipartite—it turns out that any locally checkable proof requires Ω(log n) bits per node. In this work we classify graph problems according to their local proof complexity, i.e., how many bits per node are needed in a locally checkable proof. We establish tight or near-tight results for classical graph properties such as the chromatic number. We show that the proof complexities form a natural hierarchy of complexity classes: for many classical graph problems, the proof complexity is either 0, Θ(1), Θ(log n), or poly(n) bits per node. Among the most difficult graph properties are symmetric graphs, which require Ω(n2) bits per node, and non-3-colourable graphs, which require Ω(n2/log n) bits per node—any pure graph property admits a trivial proof of size O(n2).