5 resultados para inner Mongolia steppe

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inner ear originates from an ectodermal thickening called the otic placode. The otic placode invaginates and closes to an otic vesicle, the otocyst. The otocyst epithelium undergoes morphogenetic changes and cell differentiation, leading to the formation of the labyrinth-like mature inner ear. Epithelial-mesenchymal interactions control inner ear morphogenesis, but the modes and molecules are largely unresolved. The expressions of negative cell cycle regulators in the epithelium of the early-developing inner ear have also not been elucidated. The mature inner ear comprises the hearing (cochlea) and balance (vestibular) organs that contain the nonsensory and sensory cells. In mammals, the inner ear sensory cells, called hair cells, exit the cell cycle during embryogenesis and are mitotically quiescent during late-embryonic differentiation stages and postnatally. The mechanisms that maintain this hair cell quiescense are largely unresolved. In this work I examined 1) the epithelial-mesenchymal interactions involved in inner ear morphogenesis, 2) expression of negative cell cycle regulators in the epithelium of the early developing inner ear and 3) the molecular mechanisms that maintain the postmitotic state of inner ear sensory cells. We observed that during otocyst stages, epithelial fibroblast growth factor 9 (Fgf9) communicates with the surrounding mesenchyme, where its receptors are expressed. Fgf9 inactivation leads to reduced proliferation of the surrounding vestibular mesenchyme and to the absence of semicircular canals. Semicircular canal development is blocked, since fusion plates do not form. These results show that the mesenchyme directs fusion plate formation and give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of proliferation. We show that the members of the Cip/Kip family of CKIs (p21Cip1, p27Kip1 and p57Kip2) are expressed in the early-developing inner ear. Our expression data suggest that CKIs divide the otic epithelium into proliferative and nonproliferative compartments that may underlie shaping of the otocyst. At later stages, CKIs regulate proliferation of the vestibular appendages, and this may regulate their continual growth. In addition to restricting proliferation, CKIs may play a role in regional differentiation of various epithelial cells. Differentiating and adult inner ear hair cells are postmitotic and do not proliferate in response to serum or mitogenic growth factors. In our study, we show that this is the result of the activity of negative cell cycle regulators. Based on expression profiles, we first focused on the retinoblastoma (Rb) gene, which functions downstream of the CKIs. Analysis of the inner ear phenotype of Rb mutant mice show, that the retinoblastoma protein regulates the postmitotic state of hair cells. Rb inactivation leads to hyperplasia of vestibular and cochlear sensory epithelia that is a result of abnormal cell cycle entry of differentiated hair cells and of delayed cell cycle exit of the hair cell precursor cells. In addition, we show that p21Cip1 and p19Ink4d cooperate in maintaining the postmitotic state of postnatal auditory hair cells. Whereas inactivation of p19Ink4d alone leads to low-level S-phase entry (Chen et al., 2003) and p21Cip1 null mutant mice have a normal inner ear phenotype, codeletion of p19Ink4d and p21Cip1 triggers high-level S-phase entry of auditory hair cells during early postnatal life, which leads to supernumerary hair cells. The ectopic hair cells undergo apoptosis in all of the mutant mice studied, DNA damage being the immediate cause of this death. These findings demonstrate that the maintenance of the postmitotic state of hair cells is regulated by Rb and several CKIs, and that these cell cycle regulators are critical for the lifelong survival of hair cells. These data have implications for the future design of therapies to induce hair cell regrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The zinc-finger transcription factors GATA2 and GATA3 in vertebrates belong to the six-member family that are essential regulators in the development of various organs. The aim of this study was to gain new information of the roles of GATA2 and GATA3 in inner ear morphogenesis and of the function of GATA2 in neuronal fate specification in the midbrain using genetically modified mouse and chicken embryos as models. A century ago the stepwise process of inner ear epithelial morphogenesis was described, but the molecular players regulating the cellular differentiation of the otic epithelium are still not fully resolved. This study provided novel data on GATA factor roles in several developmental processes during otic development. The expression analysis in chicken suggested that GATA2 and GATA3 possess redundant roles during otic cup and vesicle formation, but complementary cell-type specific functions during vestibular and cochlear morphogenesis. The comparative analysis between mouse and chicken Gata2 and Gata3 expression revealed many conserved aspects, especially during later stages of inner ear development, while the expression was more divergent at early stages. Namely, expression of both Gata genes was initiated earlier in chicken than mouse otic epithelium relative to the morphogenetic stages. Likewise, important differences concerning Gata3 expression in the otic cup epithelium were detected between mouse and chicken, suggesting that distinct molecular mechanisms regulate otic vesicle closure in different vertebrate species. Temporally distinct Gata2 and Gata3 expression was also found during otic ganglion formation in mouse and chicken. Targeted inactivation of Gata3 in mouse embryos caused aberrant morphology of the otic vesicle that in severe cases was disrupted into two parts, a dorsal and a ventral vesicle. Detailed analyses of Gata3 mutant embryos unveiled a crucial role for GATA3 in the initial inner ear morphogenetic event, the invagination of the otic placode. A large-scale comparative expression analysis suggested that GATA3 could control cell adhesion and motility in otic epithelium, which could be important for early morphogenesis. GATA3 was also identified as the first factor to directly regulate Fgf10 expression in the otic epithelium and could thus influence the development of the semicircular ducts. Despite the serious problems in the early inner ear development, the otic sensory fate establishment and some vestibular hair cell differentiation was observable in pharmacologically rescued Gata3-/- embryos. Cochlear sensory differentiation was, however, completely blocked so that no auditory hair cells were detected. In contrast to the early morphogenetic phenotype in Gata3-/- mutants, conditional inactivation of Gata2 in mouse embryos resulted in a relatively late growth defect of the three semicircular ducts. GATA2 was required for the proliferation of the vestibular nonsensory epithelium to support growing of the three ducts. Concurrently, with the role in epithelial semicircular ducts, GATA2 was also required for the mesenchymal cell clearance from the vestibular perilymphatic region between the membranous labyrinth and bony capsule. The gamma-aminobutyric acid-secreting (GABAergic) neurons in the midbrain are clinically relevant since they contribute to fear, anxiety, and addiction regulation. The molecular mechanisms regulating the GABAergic neuronal development, however, are largely unknown. Using tissue-specific mutagenesis in mice, GATA2 was characterized as a critical determinant of the GABAergic neuronal fate in the midbrain. In Gata2-deficient mouse midbrain, GABAergic neurons were not produced, instead the Gata2-mutant cells acquired a glutamatergic neuronal phenotype. Gain-of-function experiments in chicken also revealed that GATA2 was sufficient to induce GABAergic differentiation in the midbrain.