1 resultado para incoherent optical transmission
em Helda - Digital Repository of University of Helsinki
Resumo:
Thin films of various metal fluorides are suited for optical coatings from infrared (IR) to ultraviolet (UV) range due to their excellent light transmission. In this work, novel metal fluoride processes have been developed for atomic layer deposition (ALD), which is a gas phase thin film deposition method based on alternate saturative surface reactions. Surface controlled self-limiting film growth results in conformal and uniform films. Other strengths of ALD are precise film thickness control, repeatability and dense and pinhole free films. All these make the ALD technique an ideal choice also for depositing metal fluoride thin films. Metal fluoride ALD processes have been largely missing, which is mostly due to a lack of a good fluorine precursor. In this thesis, TiF4 precursor was used for the first time as the fluorine source in ALD for depositing CaF2, MgF2, LaF3 and YF3 thin films. TaF5 was studied as an alternative novel fluorine precursor only for MgF2 thin films. Metal-thd (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) compounds were applied as the metal precursors. The films were grown at 175 450 °C and they were characterized by various methods. The metal fluoride films grown at higher temperatures had generally lower impurity contents with higher UV light transmittances, but increased roughness caused more scattering losses. The highest transmittances and low refractive indices below 1.4 (at 580 nm) were obtained with MgF2 samples. MgF2 grown from TaF5 precursor showed even better UV light transmittance than MgF2 grown from TiF4. Thus, TaF5 can be considered as a high quality fluorine precursor for depositing metal fluoride thin films. Finally, MgF2 films were applied in fabrication of high reflecting mirrors together with Ta2O5 films for visible region and with LaF3 films for UV region. Another part of the thesis consists of applying already existing ALD processes for novel optical devices. In addition to the high reflecting mirrors, a thin ALD Al2O3 film on top of a silver coating was proven to protect the silver mirror coating from tarnishing. Iridium grid filter prototype for rejecting IR light and Ir-coated micro channel plates for focusing x-rays were successfully fabricated. Finally, Ir-coated Fresnel zone plates were shown to provide the best spatial resolution up to date in scanning x-ray microscopy.