3 resultados para hydrocephalus

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental disorder causing death in utero or shortly after birth. The hallmarks of the disease are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele with or without hydrocephalus and polydactyly. Other anomalies frequently seen in the patients are incomplete development of the male genitalia, club feet and cleft lip or palate. The clinical picture has been well characterized in the literature while the molecular pathology underlying the disease has remained unclear until now. In this study we identified the first MKS gene by utilizing the disease haplotypes in Finnish MKS families linked to the MKS1 locus on chromosome 17q23 (MKS1) locus. Subsequently, the genetic heterogeneity of MKS was established in the Finnish families. Mutations in at least four different genes can cause MKS. These genes have been mapped to the chromosomes 17q23 (MKS1), 11q13 (MKS2), 8q22 (MKS3) and 9q33 (MKS4). Two of these genes have been identified so far: The MKS1 gene (this work) and the MKS3 gene. The identified MKS1 gene was initially a novel human gene which is conserved among species. We found three different MKS mutations, one of them being the Finnish founder mutation. The information available from MKS1 orthologs in other species convinced us that the MKS1 gene is required for normal ciliogenesis. Defects of the cilial system in other human diseases and model organisms actually cause phenotypic features similar to those seen in MKS patients. The MKS3 (TMEM67) gene encodes a transmembrane protein and the gene maps to the syntenic Wpk locus in the rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. The available information from these two genes suggest that MKS1 would encode a structural component of the centriole required for normal ciliary functions, and MKS3 would be a transmembrane component most likely required for normal ciliary sensory signaling. The MKS4 locus was localized to chromosme 9q32-33 in this study by using an inbred Finnish family with two affected and two healthy children. This fourth locus contains TRIM32 gene, which is associated to another well characterized human ciliopathy, Bardet Biedl syndrome (BBS). Future studies should identify the MKS4 gene on chromosome 9q and confirm if there are more than two genes causing MKS Finnish families. The research on critical signaling pathways in organogenesis have shown that both Wnt and Hedgehog pathways are dependent on functional cilia. The MKS gene products will serve as excellent model molecules for more detailed studies of the functional role of cilia in organogenesis in more detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome that is inherited by an autosomal recessive manner. HLS belongs to the Finnish disease heritage, an entity of rare diseases that are more prevalent in Finland than in other parts of the world. The phenotypic spectrum of the syndrome is wide and it is characterized by several developmental abnormalities, including hydrocephalus and absent midline structures in the brain, abnormal lobation of the lungs, polydactyly as well as micrognathia and other craniofacial anomalies. Polyhydramnios are relatively frequent during pregnancy. HLS can nowadays be effectively identified by ultrasound scan already at the end of the first trimester of pregnancy. One of the main goals in this study was to identify and characterize the gene defect underlying HLS. The defect was found from a previously unknown gene that was named HYLS1. Identification of the gene defect made it possible to confirm the HLS diagnosis genetically, an aspect that provides valuable information for the families in which a fetus is suspected to have HLS. Neuropathological findings of mutation confirmed HLS cases were described for the first time in detail in this study. Also, detailed general pathological findings were described. Since HYLS1 was an unknown gene with no relatives in the known gene families, many functional studies were performed in order to unravel the function of the gene and of the protein it codes for. Studies showed, for example, that the subcellular localization of the HYLS1 protein was different when the normal and the defective forms were compared. In addition, HYLS1 was shown to possess transactivation potential which was significantly diminished in the defective form. According to the results of this study it can be stated that HYLS1 most likely participates in transcriptional regulation and also in the regulation of cholesterol metabolism and that the function of HYLS1 is critical for normal fetal development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Distal anterior cerebral artery (DACA) aneurysms represent about 6% of all intracranial aneurysms. So far, only small series on treatment of these aneurysms have been published. Our aim is to evaluate the anatomic features, microneurosurgical techniques, treatment results, and long-term outcome in patients treated for DACA aneurysms. Patients and methods: We analyzed the clinical and radiological data on 517 consecutive patients diagnosed with DACA aneurysm at two neurosurgical centers serving solely the Southern (Helsinki) and Eastern (Kuopio) Finland in 1936–2007, and used a defined subgroup of the whole study population in each part of the study. Detailed anatomic analysis was performed in 101 consecutive patients from 1998 to 2007. Treatment results were analyzed in 427 patients treated between 1980 to 2005, the era of CT imaging and microneurosurgery. Long-term treatment outcome of ruptured DACA aneurysm(s) was evaluated in 280 patients with a median follow-up of 10 years; no patients were lost to follow-up. Results: DACA aneurysms, found most often (83%) at the A3 segment of the anterior cerebral artery (ACA), were smaller (median 6 mm vs. 8 mm), more frequently associated with multiple aneurysms (35% vs. 18%), and presented more often with intracerebral hematomas (ICHs) (53% vs. 26%) than ruptured aneurysms in general. They were associated with anomalies of the ACA in 23% of the patients. Microsurgical treatment showed similar complication rates (treatment morbidity 15%, treatment mortality 0.4%) as for other ruptured aneurysms. At one year after subarachnoid hemorrhage (SAH), DACA aneurysms had equally favorable outcome (GOS≥4) as other ruptured aneurysms (74% vs. 69%) but their mortality was lower (13% vs. 24%). Factors predicting unfavorable outcome for ruptured DACA aneurysms were advanced age, Hunt&Hess≥3, rebleeding before treatment, ICH, intraventricular hemorrhage, and severe preoperative hydrocephalus. The cumulative relative survival ratio showed 16% excess mortality in patients with ruptured DACA aneurysm during the first three years after SAH compared to the matched general population. From the fourth year onwards, there was no excess mortality during the follow-up. There were four episodes of recurrent SAH, only one due to treated DACA aneurysm, with a 10-year cumulative risk of 1.4%. Conclusions: The special neurovascular features and frequent association with anterior cerebral artery anomalies must be taken into account when planning occlusive treatment of DACA aneurysms. Clipping of DACA aneurysms provides a long-lasting result, with very small rates of rebleeding. After surviving three years from rupture of DACA aneurysm, the long-term survival of these patients becomes similar to that of the matched general population.