12 resultados para high spin state

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large proportion of our knowledge about the surfaces of atmosphereless solar-system bodies is obtained through remote-sensing measurements. The measurements can be carried out either as ground-based telescopic observations or space-based observations from orbiting spacecraft. In both cases, the measurement geometry normally varies during the observations due to the orbital motion of the target body, the spacecraft, etc.. As a result, the data are acquired over a variety of viewing and illumination angles. Surfaces of planetary bodies are usually covered with a layer of loose, broken-up rock material called the regolith whose physical properties affect the directional dependence of remote-sensed measurements. It is of utmost importance for correct interpretation of the remote-sensed data to understand the processes behind this alteration. In the thesis, the multi-angular effects that the physical properties of the regolith have on remote-sensing measurements are studied in two regimes of electromagnetic radiation, visible to near infrared and soft X-rays. These effects are here termed generally the regolith effects in remote sensing. Although the physical mechanisms that are important in these regions are largely different, notable similarities arise in the methodology that is used in the study of the regolith effects, including the characterization of the regolith both in experimental studies and in numerical simulations. Several novel experimental setups have been constructed for the thesis. Alongside the experimental work, theoretical modelling has been carried out, and results from both approaches are presented. Modelling of the directional behaviour of light scattered from a regolith is utilized to obtain shape and spin-state information of several asteroids from telescopic observations and to assess the surface roughness and single-scattering properties of lunar maria from spacecraft observations. One of the main conclusions is that the azimuthal direction is an important factor in detailed studies of planetary surfaces. In addition, even a single parameter, such as porosity, can alter the light scattering properties of a regolith significantly. Surface roughness of the regolith is found to alter the elemental fluorescence line ratios of a surface obtained through planetary soft X-ray spectrometry. The results presented in the thesis are among the first to report this phenomenon. Regolith effects need to be taken into account in the analysis of remote-sensed data, providing opportunities for retrieving physical parameters of the surface through inverse methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My Ph.D. dissertation presents a multi-disciplinary analysis of the mortuary practices of the Tiwanaku culture of the Bolivian high plateau, situated at an altitude of c. 3800 m above sea level. The Tiwanaku State (c. AD 500-1150) was one of the most important pre-Inca civilisations of the South Central Andes. The book begins with a brief introductory chapter. In chapter 2 I discuss methodological and theoretical developments in archaeological mortuary studies from the late 1960s until the turn of the millennium. I am especially interested in the issue how archaeological burial data can be used to draw inferences on the social structure of prehistoric societies. Chapter 3 deals with the early historic sources written in the 16th and 17th centuries, following the Spanish Conquest of the Incas. In particular, I review information on how the Incas manifested status differences between and within social classes and what kinds of burial treatments they applied. In chapter 4 I compare the Inca case with 20th century ethnographic data on the Aymara Indians of the Bolivian high plateau. Even if Christianity has affected virtually every level of Aymara religion, surprisingly many traditional features can still be observed in present day Aymara mortuary ceremonies. The archaeological part of my book begins with chapter 5, which is an introduction into Tiwanaku archaeology. In the next chapter, I present an overview of previously reported Tiwanaku cemeteries and burials. Chapter 7 deals with my own excavations at the Late Tiwanaku/early post-Tiwanaku cemetery site of Tiraska, located on the south-eastern shore of Lake Titicaca. During the 1998, 2002, and 2003 field seasons, a total of 32 burials were investigated at Tiraska. The great majority of these were subterranean stone-lined tombs, each containing the skeletal remains of 1 individual and 1-2 ceramic vessels. Nine burials have been radiocarbon dated, the dates in question indicating that the cemetery was in use from the 10th until the 13th century AD. In chapter 8 I point out that considerable regional and/or ethnic differences can be noted between studied Tiwanaku cemetery sites. Because of the mentioned differences, and a general lack of securely dated burial contexts, I feel that at present we can do no better than to classify most studied Tiwanaku burials into three broad categories: (1) elite and/or priests, (2) "commoners", and (3) sacrificial victims and/or slaves and/or prisoners of war. On the basis of such indicators as monumental architecture and occupational specialisation we would expect to find considerable status-related differences in tomb size, grave goods, etc. among the Tiwanaku. Interestingly, however, such variation is rather modest, and the Tiwanaku seem to have been a lot less interested in expending considerable labour and resources in burial facilities than their pre-Columbian contemporaries of many parts of the Central Andes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study explores new ideational changes in the information strategy of the Finnish state between 1998 and 2007, after a juncture in Finnish governing in the early 1990s. The study scrutinizes the economic reframing of institutional openness in Finland that comes with significant and often unintended institutional consequences of transparency. Most notably, the constitutional principle of publicity (julkisuusperiaate), a Nordic institutional peculiarity allowing public access to state information, is now becoming an instrument of economic performance and accountability through results. Finland has a long institutional history in the publicity of government information, acknowledged by law since 1951. Nevertheless, access to government information became a policy concern in the mid-1990s, involving a historical narrative of openness as a Nordic tradition of Finnish governing Nordic openness (pohjoismainen avoimuus). International interest in transparency of governance has also marked an opening for institutional re-descriptions in Nordic context. The essential added value, or contradictory term, that transparency has on the Finnish conceptualisation of governing is the innovation that public acts of governing can be economically efficient. This is most apparent in the new attempts at providing standardised information on government and expressing it in numbers. In Finland, the publicity of government information has been a concept of democratic connotations, but new internationally diffusing ideas of performance and national economic competitiveness are discussed under the notion of transparency and its peer concepts openness and public (sector) information, which are also newcomers to Finnish vocabulary of governing. The above concepts often conflict with one another, paving the way to unintended consequences for the reforms conducted in their name. Moreover, the study argues that the policy concerns over openness and public sector information are linked to the new drive for transparency. Drawing on theories of new institutionalism, political economy, and conceptual history, the study argues for a reinvention of Nordic openness in two senses. First, in referring to institutional history, the policy discourse of Nordic openness discovers an administrative tradition in response to new dilemmas of public governance. Moreover, this normatively appealing discourse also legitimizes the new ideational changes. Second, a former mechanism of democratic accountability is being reframed with market and performance ideas, mostly originating from the sphere of transnational governance and governance indices. Mobilizing different research techniques and data (public documents of the Finnish government and international organizations, some 30 interviews of Finnish civil servants, and statistical time series), the study asks how the above ideational changes have been possible, pointing to the importance of nationalistically appealing historical narratives and normative concepts of governing. Concerning institutional developments, the study analyses the ideational changes in central steering mechanisms (political, normative and financial steering) and the introduction of budget transparency and performance management in two cases: census data (Population Register Centre) and foreign political information (Ministry for Foreign Affairs). The new policy domain of governance indices is also explored as a type of transparency. The study further asks what institutional transformations are to be observed in the above cases and in the accountability system. The study concludes that while the information rights of citizens have been reinforced and recalibrated during the period under scrutiny, there has also been a conversion of institutional practices towards economic performance. As the discourse of Nordic openness has been rather unquestioned, the new internationally circulating ideas of transparency and the knowledge economy have entered this discourse without public notice. Since the mid 1990s, state registry data has been perceived as an exploitable economic resource in Finland and in the EU public sector information. This is a parallel development to the new drive for budget transparency in organisations as vital to the state as the Population Register Centre, which has led to marketization of census data in Finland, an international exceptionality. In the Finnish Ministry for Foreign Affairs, the post-Cold War rhetorical shift from secrecy to performance-driven openness marked a conversion in institutional practices that now see information services with high regards. But this has not necessarily led to the increased publicity of foreign political information. In this context, openness is also defined as sharing information with select actors, as a trust based non-public activity, deemed necessary amid the global economic competition. Regarding accountability system, deliberation and performance now overlap, making it increasingly difficult to identify to whom and for what the public administration is accountable. These evolving institutional practices are characterised by unintended consequences and paradoxes. History is a paradoxical component in the above institutional change, as long-term institutional developments now justify short-term reforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb$^{-1}$ collected in {$p\bar p$} collisions at {$\sqrt{s}$ = 1.96 TeV} by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on $\sigma \cdot BR (p \bar{p} \to X \to \mu \bar{\mu})$, where $X$ is a boson with spin 0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, $Z'$ bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A search for high-mass resonances in the $e^+e^-$ final state is presented based on 2.5 fb$^{-1}$ of $\sqrt{s}=$1.96 TeV $p\bar{p}$ collision data from the CDF II detector at the Fermilab Tevatron. The largest excess over the standard model prediction is at an $e^+e^-$ invariant mass of 240 GeV/$c^2$. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150--1,000 GeV/$c^2$ is 0.6% (equivalent to 2.5 $\sigma$). We exclude the standard model coupling $Z'$ and the Randall-Sundrum graviton for $k/\overline{M}_{Pl}=0.1$ with masses below 963 and 848 GeV/$c^2$ at the 95% credibility level, respectively.