4 resultados para high potentials

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My Ph.D. dissertation presents a multi-disciplinary analysis of the mortuary practices of the Tiwanaku culture of the Bolivian high plateau, situated at an altitude of c. 3800 m above sea level. The Tiwanaku State (c. AD 500-1150) was one of the most important pre-Inca civilisations of the South Central Andes. The book begins with a brief introductory chapter. In chapter 2 I discuss methodological and theoretical developments in archaeological mortuary studies from the late 1960s until the turn of the millennium. I am especially interested in the issue how archaeological burial data can be used to draw inferences on the social structure of prehistoric societies. Chapter 3 deals with the early historic sources written in the 16th and 17th centuries, following the Spanish Conquest of the Incas. In particular, I review information on how the Incas manifested status differences between and within social classes and what kinds of burial treatments they applied. In chapter 4 I compare the Inca case with 20th century ethnographic data on the Aymara Indians of the Bolivian high plateau. Even if Christianity has affected virtually every level of Aymara religion, surprisingly many traditional features can still be observed in present day Aymara mortuary ceremonies. The archaeological part of my book begins with chapter 5, which is an introduction into Tiwanaku archaeology. In the next chapter, I present an overview of previously reported Tiwanaku cemeteries and burials. Chapter 7 deals with my own excavations at the Late Tiwanaku/early post-Tiwanaku cemetery site of Tiraska, located on the south-eastern shore of Lake Titicaca. During the 1998, 2002, and 2003 field seasons, a total of 32 burials were investigated at Tiraska. The great majority of these were subterranean stone-lined tombs, each containing the skeletal remains of 1 individual and 1-2 ceramic vessels. Nine burials have been radiocarbon dated, the dates in question indicating that the cemetery was in use from the 10th until the 13th century AD. In chapter 8 I point out that considerable regional and/or ethnic differences can be noted between studied Tiwanaku cemetery sites. Because of the mentioned differences, and a general lack of securely dated burial contexts, I feel that at present we can do no better than to classify most studied Tiwanaku burials into three broad categories: (1) elite and/or priests, (2) "commoners", and (3) sacrificial victims and/or slaves and/or prisoners of war. On the basis of such indicators as monumental architecture and occupational specialisation we would expect to find considerable status-related differences in tomb size, grave goods, etc. among the Tiwanaku. Interestingly, however, such variation is rather modest, and the Tiwanaku seem to have been a lot less interested in expending considerable labour and resources in burial facilities than their pre-Columbian contemporaries of many parts of the Central Andes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that semantic information processing is modularized according to the input form (e.g., visual, verbal, non-verbal sound). A great deal of research has concentrated on detecting a separate verbal module. Also, it has traditionally been assumed in linguistics that the meaning of a single clause is computed before integration to a wider context. Recent research has called these views into question. The present study explored whether it is reasonable to assume separate verbal and nonverbal semantic systems in the light of the evidence from event-related potentials (ERPs). The study also provided information on whether the context influences processing of a single clause before the local meaning is computed. The focus was on an ERP called N400. Its amplitude is assumed to reflect the effort required to integrate an item to the preceding context. For instance, if a word is anomalous in its context, it will elicit a larger N400. N400 has been observed in experiments using both verbal and nonverbal stimuli. Contents of a single sentence were not hypothesized to influence the N400 amplitude. Only the combined contents of the sentence and the picture were hypothesized to influence the N400. The subjects (n = 17) viewed pictures on a computer screen while hearing sentences through headphones. Their task was to judge the congruency of the picture and the sentence. There were four conditions: 1) the picture and the sentence were congruent and sensible, 2) the sentence and the picture were congruent, but the sentence ended anomalously, 3) the picture and the sentence were incongruent but sensible, 4) the picture and the sentence were incongruent and anomalous. Stimuli from the four conditions were presented in a semi-randomized sequence. Their electroencephalography was simultaneously recorded. ERPs were computed for the four conditions. The amplitude of the N400 effect was largest in the incongruent sentence-picture -pairs. The anomalously ending sentences did not elicit a larger N400 than the sensible sentences. The results suggest that there is no separate verbal semantic system, and that the meaning of a single clause is not processed independent of the context.