16 resultados para hadronic colliders
em Helda - Digital Repository of University of Helsinki
Resumo:
This work belongs to the field of computational high-energy physics (HEP). The key methods used in this thesis work to meet the challenges raised by the Large Hadron Collider (LHC) era experiments are object-orientation with software engineering, Monte Carlo simulation, the computer technology of clusters, and artificial neural networks. The first aspect discussed is the development of hadronic cascade models, used for the accurate simulation of medium-energy hadron-nucleus reactions, up to 10 GeV. These models are typically needed in hadronic calorimeter studies and in the estimation of radiation backgrounds. Various applications outside HEP include the medical field (such as hadron treatment simulations), space science (satellite shielding), and nuclear physics (spallation studies). Validation results are presented for several significant improvements released in Geant4 simulation tool, and the significance of the new models for computing in the Large Hadron Collider era is estimated. In particular, we estimate the ability of the Bertini cascade to simulate Compact Muon Solenoid (CMS) hadron calorimeter HCAL. LHC test beam activity has a tightly coupled cycle of simulation-to-data analysis. Typically, a Geant4 computer experiment is used to understand test beam measurements. Thus an another aspect of this thesis is a description of studies related to developing new CMS H2 test beam data analysis tools and performing data analysis on the basis of CMS Monte Carlo events. These events have been simulated in detail using Geant4 physics models, full CMS detector description, and event reconstruction. Using the ROOT data analysis framework we have developed an offline ANN-based approach to tag b-jets associated with heavy neutral Higgs particles, and we show that this kind of NN methodology can be successfully used to separate the Higgs signal from the background in the CMS experiment.
Resumo:
"We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction."
Resumo:
We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.
Resumo:
"We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction."
Resumo:
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb-1 of integrated luminosity of pp̅ collisions at √s=1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516±239(stat)±144(syst) diboson candidate events and measure a cross section σ(pp̅ →VV+X) of 18.0±2.8(stat)±2.4(syst)±1.1(lumi) pb, in agreement with the expectations of the standard model.
Resumo:
We present a measurement of the top quark mass in the all-hadronic channel (\tt $\to$ \bb$q_{1}\bar{q_{2}}q_{3}\bar{q_{4}}$) using 943 pb$^{-1}$ of \ppbar collisions at $\sqrt {s} = 1.96$ TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix-element (ME) to $\ttbar$ candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1 $\pm$ 3.7 (stat.+JES) $\pm$ 2.1 (syst.) GeV/$c^{2}$. The combined uncertainty on the top quark mass is 4.3 GeV/$c^{2}$.
Resumo:
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W,Z) where one boson decays to a dijet final state . The data correspond to 3.5 inverse femtobarns of integrated luminosity of ppbar collisions at sqrt(s)=1.96 TeV collected by the CDFII detector at the Fermilab Tevatron. We observe 1516+/-239(stat)+/-144(syst) diboson candidate events and measure a cross section sigma(ppbar->VV+X) of 18.0+/-2.8(stat)+/-2.4(syst)+/-1.1(lumi) pb, in agreement with the expectations of the standard model.
Resumo:
Modern elementary particle physics is based on quantum field theories. Currently, our understanding is that, on the one hand, the smallest structures of matter and, on the other hand, the composition of the universe are based on quantum field theories which present the observable phenomena by describing particles as vibrations of the fields. The Standard Model of particle physics is a quantum field theory describing the electromagnetic, weak, and strong interactions in terms of a gauge field theory. However, it is believed that the Standard Model describes physics properly only up to a certain energy scale. This scale cannot be much larger than the so-called electroweak scale, i.e., the masses of the gauge fields W^+- and Z^0. Beyond this scale, the Standard Model has to be modified. In this dissertation, supersymmetric theories are used to tackle the problems of the Standard Model. For example, the quadratic divergences, which plague the Higgs boson mass in the Standard model, cancel in supersymmetric theories. Experimental facts concerning the neutrino sector indicate that the lepton number is violated in Nature. On the other hand, the lepton number violating Majorana neutrino masses can induce sneutrino-antisneutrino oscillations in any supersymmetric model. In this dissertation, I present some viable signals for detecting the sneutrino-antisneutrino oscillation at colliders. At the e-gamma collider (at the International Linear Collider), the numbers of the electron-sneutrino-antisneutrino oscillation signal events are quite high, and the backgrounds are quite small. A similar study for the LHC shows that, even though there are several backrounds, the sneutrino-antisneutrino oscillations can be detected. A useful asymmetry observable is introduced and studied. Usually, the oscillation probability formula where the sneutrinos are produced at rest is used. However, here, we study a general oscillation probability. The Lorentz factor and the distance at which the measurement is made inside the detector can have effects, especially when the sneutrino decay width is very small. These effects are demonstrated for a certain scenario at the LHC.
Resumo:
We report on a search for the production of the Higgs boson decaying to two bottom quarks accompanied by two additional quarks. The data sample used corresponds to an integrated luminosity of approximately 4 fb-1 of pp̅ collisions at √s=1.96 TeV recorded by the CDF II experiment. This search includes twice the integrated luminosity of the previous published result, uses analysis techniques to distinguish jets originating from light flavor quarks and those from gluon radiation, and adds sensitivity to a Higgs boson produced by vector boson fusion. We find no evidence of the Higgs boson and place limits on the Higgs boson production cross section for Higgs boson masses between 100 GeV/c2 and 150 GeV/c2 at the 95% confidence level. For a Higgs boson mass of 120 GeV/c2, the observed (expected) limit is 10.5 (20.0) times the predicted standard model cross section.
Resumo:
This thesis describes methods for the reliable identification of hadronically decaying tau leptons in the search for heavy Higgs bosons of the minimal supersymmetric standard model of particle physics (MSSM). The identification of the hadronic tau lepton decays, i.e. tau-jets, is applied to the gg->bbH, H->tautau and gg->tbH+, H+->taunu processes to be searched for in the CMS experiment at the CERN Large Hadron Collider. Of all the event selections applied in these final states, the tau-jet identification is the single most important event selection criterion to separate the tiny Higgs boson signal from a large number of background events. The tau-jet identification is studied with methods based on a signature of a low charged track multiplicity, the containment of the decay products within a narrow cone, an isolated electromagnetic energy deposition, a non-zero tau lepton flight path, the absence of electrons, muons, and neutral hadrons in the decay signature, and a relatively small tau lepton mass compared to the mass of most hadrons. Furthermore, in the H+->taunu channel, helicity correlations are exploited to separate the signal tau jets from those originating from the W->taunu decays. Since many of these identification methods rely on the reconstruction of charged particle tracks, the systematic uncertainties resulting from the mechanical tolerances of the tracking sensor positions are estimated with care. The tau-jet identification and other standard selection methods are applied to the search for the heavy neutral and charged Higgs bosons in the H->tautau and H+->taunu decay channels. For the H+->taunu channel, the tau-jet identification is redone and optimized with a recent and more detailed event simulation than previously in the CMS experiment. Both decay channels are found to be very promising for the discovery of the heavy MSSM Higgs bosons. The Higgs boson(s), whose existence has not yet been experimentally verified, are a part of the standard model and its most popular extensions. They are a manifestation of a mechanism which breaks the electroweak symmetry and generates masses for particles. Since the H->tautau and H+->taunu decay channels are important for the discovery of the Higgs bosons in a large region of the permitted parameter space, the analysis described in this thesis serves as a probe for finding out properties of the microcosm of particles and their interactions in the energy scales beyond the standard model of particle physics.
Resumo:
We report a search for single top quark production with the CDF II detector using 2.1 fb-1 of integrated luminosity of pbar p collisions at sqrt{s}=1.96 TeV. The data selected consist of events characterized by large energy imbalance in the transverse plane and hadronic jets, and no identified electrons and muons, so the sample is enriched in W -> tau nu decays. In order to suppress backgrounds, additional kinematic and topological requirements are imposed through a neural network, and at least one of the jets must be identified as a b-quark jet. We measure an excess of signal-like events in agreement with the standard model prediction, but inconsistent with a model without single top quark production by 2.1 standard deviations (sigma), with a median expected sensitivity of 1.4 sigma. Assuming a top quark mass of 175 GeV/c2 and ascribing the excess to single top quark production, the cross section is measured to be 4.9+2.5-2.2(stat+syst)pb, consistent with measurements performed in independent datasets and with the standard model prediction.
Resumo:
We report the most restrictive direct limits on masses of fourth-generation down-type quarks b′, and quarklike composite fermions (B or T5/3), decaying promptly to tW∓. We search for a significant excess of events with two same-charge leptons (e, μ), several hadronic jets, and missing transverse energy. An analysis of data from pp̅ collisions with an integrated luminosity of 2.7 fb-1 collected with the CDF II detector at Fermilab yields no evidence for such a signal, setting mass limits mb′, mB>338 GeV/c2 and mT5/3>365 GeV/c2 at 95% confidence level.
Resumo:
We report the most restrictive direct limits on masses of fourth-generation down-type quarks $b^{\prime}$, and quark-like composite fermions ($B$ or $T_{5/3}$), decaying promptly to $t W^{\mp}$. We search for a significant excess of events with two same-charge leptons ($e$, $\mu$), several hadronic jets, and missing transverse energy. An analysis of data from $p\overline{p}$ collisions with an integrated luminosity of 2.7 fb$^{-1}$ collected with the CDF II detector at Fermilab yields no evidence for such a signal, setting mass limits $m_{b^{\prime}}, m_{B} >$ 338 $\mathrm{GeV}/c^2$ and $m_{T_{5/3}} >$ 365 $\mathrm{GeV}/c^2$ at 95% confidence level.
Resumo:
We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)
First simultaneous measurement of the top quark mass in the lepton+jets and dilepton channels at CDF
Resumo:
We present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9fb^-1 of ppbar collisions collected at sqrt{s}=1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. We reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the dilepton channel. We perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. Using 332 lepton + jets candidate events and 144 dilepton candidate events, we measure the top quark mass to be mtop=171.9 +/- 1.7 (stat. + JES) +/- 1.1 (syst.) GeV/c^2 = 171.9 +/- 2.0 GeV/c^2.