2 resultados para fructose
em Helda - Digital Repository of University of Helsinki
Resumo:
Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.
Resumo:
Oral cancer is the seventh most common cancer worldwide and its incidence is increasing. The most important risk factors for oral cancer are chronic alcohol consumption and tobacco smoking, up to 80 % of oral carcinomas are estimated to be caused by alcohol and tobacco. They both trigger an increased level of salivary acetaldehyde, during and after consumption, which is believed to lead to carcinogenesis. Acetaldehyde has multiple mutagenic features and it has recently been classified as a Group 1 carcinogen for humans by the International Agency for Research on Cancer. Acetaldehyde is metabolized from ethanol by microbes of oral microbiota. Some oral microbes possess alcohol dehydrogenase enzyme (ADH) activity, which is the main enzyme in acetaldehyde production. Many microbes are also capable of acetaldehyde production via alcohol fermentation from glucose. However, metabolism of ethanol into acetaldehyde leads to production of high levels of this carcinogen. Acetaldehyde is found in saliva during and after alcohol consumption. In fact, rather low ethanol concentrations (2-20mM) derived from blood to saliva are enough for microbial acetaldehyde production. The high acetaldehyde levels in saliva after alcohol challenge are explained by the lack of oral microbiota and mucosa to detoxify acetaldehyde by metabolizing it into acetate and acetyl coenzymeA. The aim of this thesis project was to specify the role of oral microbes in the in vitro production of acetaldehyde in the presence of ethanol. In addition, it was sought to establish whether microbial metabolism could also produce acetaldehyde from glucose. Furthermore, the potential of xylitol to inhibit ethanol metabolism and acetaldehyde production was explored. Isolates of oral microbes were used in the first three studies. Acetaldehyde production was analyzed after ethanol, glucose and fructose incubation with gas chromatography measurement. In studies I and III, the ADH enzyme activity of some microbes was measured by fluorescence. The effect of xylitol was analyzed by incubating microbes with ethanol and xylitol. The fourth study was made ex vivo and microbial samples obtained from different patient groups were analyzed. This work has demonstrated that isolates of oral microbiota are able to produce acetaldehyde in the presence of clinically relevant ethanol and glucose concentrations. Significant differences were found between microbial species and isolates from different patient groups. In particular, the ability of candidal isolates from APECED patients to produce significantly more acetaldehyde in glucose incubation compared to healthy and cancer patient isolates is an interesting observation. Moreover, xylitol was found to reduce their acetaldehyde production significantly. Significant ADH enzyme activity was found in the analyzed high acetaldehyde producing streptococci and candida isolates. In addition, xylitol was found to reduce the ADH enzyme activity of C. albicans. Some results from the ex vivo study were controversial, since acetaldehyde production did not correlate as expected with the amount of microbes in the samples. Nevertheless, the samples isolated from patients did produce significant amounts of acetaldehyde with a clinically relevant ethanol concentration.