5 resultados para free radical
em Helda - Digital Repository of University of Helsinki
Resumo:
In this thesis, the kinetics of several alkyl, halogenated alkyl, and alkenyl free radical reactions with NO2, O2, Cl2, and HCl reactants were studied over a wide temperature range in time resolved conditions. Laser photolysis photoionisation mass spectrometer coupled to a flow reactor was the experimental method employed and this thesis present the first measurements performed with the experimental system constructed. During this thesis a great amount of work was devoted to the designing, building, testing, and improving the experimental apparatus. Carbon-centred free radicals were generated by the pulsed 193 or 248 nm photolysis of suitable precursors along the tubular reactor. The kinetics was studied under pseudo-first-order conditions using either He or N2 buffer gas. The temperature and pressure ranges employed were between 190 and 500 K, and 0.5 45 torr, respectively. The possible role of heterogeneous wall reactions was investigated employing reactor tubes with different sizes, i.e. to significantly vary the surface to volume ratio. In this thesis, significant new contributions to the kinetics of carbon-centred free radical reactions with nitrogen dioxide were obtained. Altogether eight substituted alkyl (CH2Cl, CHCl2, CCl3, CH2I, CH2Br, CHBr2, CHBrCl, and CHBrCH3) and two alkenyl (C2H3, C3H3) free radical reactions with NO2 were investigated as a function of temperature. The bimolecular rate coefficients of all these reactions were observed to possess negative temperature dependencies, while pressure dependencies were not noticed for any of these reactions. Halogen substitution was observed to moderately reduce the reactivity of substituted alkyl radicals in the reaction with NO2, while the resonance stabilisation of the alkenyl radical lowers its reactivity with respect to NO2 only slightly. Two reactions relevant to atmospheric chemistry, CH2Br + O2 and CH2I + O2, were also investigated. It was noticed that while CH2Br + O2 reaction shows pronounced pressure dependence, characteristic of peroxy radical formation, no such dependence was observed for the CH2I + O2 reaction. Observed primary products of the CH2I + O2 reaction were the I-atom and the IO radical. Kinetics of CH3 + HCl, CD3 + HCl, CH3 + DCl, and CD3 + DCl reactions were also studied. While all these reactions possess positive activation energies, in contrast to the other systems investigated in this thesis, the CH3 + HCl and CD3 + HCl reactions show a non-linear temperature dependency on the Arrhenius plot. The reactivity of substituted methyl radicals toward NO2 was observed to increase with decreasing electron affinity of the radical. The same trend was observed for the reactions of substituted methyl radicals with Cl2. It is proposed that interactions of frontier orbitals are responsible to these observations and Frontier Orbital Theory could be used to explain the observed reactivity trends of these highly exothermic reactions having reactant-like transition states.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
Most women acquire genital high risk human papillomavirus (HPV) infection during their lifetime, but seldom the infection persists and leads to cervical cancer. However, currently it is not possible to identify the women who will develop HPV mediated cervical cancer and this often results to large scale follow-up and overtreatment of the likely spontaneously regressing infection. Thus, it is important to obtain more information on the course of HPV and find markers that could help to identify HPV infected women in risk for progression of cervical lesions and ultimately cancer. Nitric oxide is a free radical gas that takes part both in immune responses and carcinogenesis. Nitric oxide is produced also by cervical cells and therefore, it is possible that cervical nitric oxide could affect also HPV infection. In the present study, including 801 women from the University of Helsinki between years of 2006 and 2011, association between HPV and cervical nitric oxide was evaluated. The levels of nitric oxide were measured as its metabolites nitrate and nitirite (NOx) by spectrophotometry and the expression of nitric oxide producing enzymes endothelial and inducible synthases (eNOS, iNOS) by Western blotting. Women infected with HPV had two-times higher cervical fluid NOx levels compared with non-infected ones. The expression levels of both eNOS and iNOS were higher in HPV-infected women compared with non-infected. Another sexually transmitted disease Chlamydia trachomatis that is an independent risk factor for cervical cancer was also accompanied with elevated NOx levels, whereas vaginal infections, bacterial vaginosis and candida, did not have any effect on NOx levels. The meaning of the elevated HPV related cervical nitric oxide was evaluated in a 12 months follow-up study. It was revealed that high baseline cervical fluid NOx levels favored HPV persistence with OR 4.1. However, low sensitivity (33%) and high false negative rate (67%) restrict the clinical use of the current NOx test. This study indicated that nitric oxide favors HPV persistence and thus it seems to be one of the cofactor associated with a risk of carcinogenesis.
Resumo:
The first glycyl radical in an enzyme was described 20 years ago and since then the family of glycyl radical enzymes (GREs) has expanded to include enzymes catalysing five chemically distinct reactions. The type enzymes of the family, anaerobic ribonucleotide reductase (RNRIII) and pyruvate formate lyase (PFL) had been studied long before it was known that they are GREs. Spectroscopic measurements on the radical and an observation that exposure to oxygen irreversibly inactivates the enzymes by cleavage of the protein proved that the radical is located on a particular glycine residue, close to the C-terminus of the protein. Both anaerobic RNRIII and PFL, are important for many anaerobic and facultative anaerobic bacteria as RNRIII is responsible for the synthesis of DNA precursors and PFL catalyses a key metabolic reaction in glycolysis. The crystal structures of both were solved in 1999 and they revealed that, although the enzymes do not share significant sequence identity, they share a similar structure - the radical site and residues necessary for catalysis are buried inside a ten stranded $\ualpha $/$\ubeta $-barrel. GREs are synthesised in an inactive form and are post-translationally activated by an activating enzyme which uses S-adenosyl methionine and an iron-sulphur cluster to generate the radical. One of the goals of this thesis work was to crystallise the activating enzyme of PFL. This task is challenging as, like GREs, the activating component is inactivated by oxygen. The experiments were therefore carried out in an oxygen free atmosphere. This is the first report of a crystalline GRE activating enzyme. Recently several new GREs have been characterised, all sharing sequence similarity to PFL but not to RNRIII. Also, the genome sequencing projects have identified many PFL-like GREs of unknown function, usually annotated as PFLs. In the present thesis I describe the grouping of these PFL family enzymes based on the sequence similarity and analyse the conservation patterns when compared to the structure of E. coli PFL. Based on this information an activation route is proposed. I also report a crystal structure of one of the PFL-like enzymes with unknown function, PFL2 from Archaeoglobus fulgidus. As A. fulgidus is a hyperthermophilic organism, possible mechanisms stabilising the structure are discussed. The organisation of an active site of PFL2 suggests that the enzyme may be a dehydratase. Keywords: glycyl radical, enzyme, pyruvate formate lyase, x-ray crystallography, bioinformatics
Resumo:
The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.