5 resultados para depth map
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.
Resumo:
Climate change will influence the living conditions of all life on Earth. For some species the change in the environmental conditions that has occurred so far has already increased the risk of extinction, and the extinction risk is predicted to increase for large numbers of species in the future. Some species may have time to adapt to the changing environmental conditions, but the rate and magnitude of the change are too great to allow many species to survive via evolutionary changes. Species responses to climate change have been documented for some decades. Some groups of species, like many insects, respond readily to changes in temperature conditions and have shifted their distributions northwards to new climatically suitable regions. Such range shifts have been well documented especially in temperate zones. In this context, butterflies have been studied more than any other group of species, partly for the reason that their past geographical ranges are well documented, which facilitates species-climate modelling and other analyses. The aim of the modelling studies is to examine to what extent shifts in species distributions can be explained by climatic and other factors. Models can also be used to predict the future distributions of species. In this thesis, I have studied the response to climate change of one species of butterfly within one geographically restricted area. The study species, the European map butterfly (Araschnia levana), has expanded rapidly northwards in Finland during the last two decades. I used statistical and dynamic modelling approaches in combination with field studies to analyse the effects of climate warming and landscape structure on the expansion. I studied possible role of molecular variation in phosphoglucose isomerase (PGI), a glycolytic enzyme affecting flight metabolism and thereby flight performance, in the observed expansion of the map butterfly at two separate expansion fronts in Finland. The expansion rate of the map butterfly was shown to be correlated with the frequency of warmer than average summers during the study period. The result is in line with the greater probability of occurrence of the second generation during warm summers and previous results on this species showing greater mobility of the second than first generation individuals. The results of a field study in this thesis indicated low mobility of the first generation butterflies. Climatic variables alone were not sufficient to explain the observed expansion in Finland. There are also problems in transferring the climate model to new regions from the ones from which data were available to construct the model. The climate model predicted a wider distribution in the south-western part of Finland than what has been observed. Dynamic modelling of the expansion in response to landscape structure suggested that habitat and landscape structure influence the rate of expansion. In southern Finland the landscape structure may have slowed down the expansion rate. The results on PGI suggested that allelic variation in this enzyme may influence flight performance and thereby the rate of expansion. Genetic differences of the populations at the two expansion fronts may explain at least partly the observed differences in the rate of expansion. Individuals with the genotype associated with high flight metabolic rate were most frequent in eastern Finland, where the rate of range expansion has been highest.
Resumo:
Objectives: GPS technology enables the visualisation of a map reader s location on a mobile map. Earlier research on the cognitive aspects of map reading identified that searching for map-environment points is an essential element for the process of determining one s location on a mobile map. Map-environment points refer to objects that are visualized on the map and are recognizable in the environment. However, because the GPS usually adds only one point to the map that has a relation to the environment, it does not provide a sufficient amount of information for self-location. The aim of the present thesis was to assess the effect of GPS on the cognitive processes involved in determining one s location on a map. Methods: The effect of GPS on self-location was studied in a field experiment. The subjects were shown a target on a mobile map, and they were asked to point in the direction of the target. In order for the map reader to be able to deduce the direction of the target, he/she has to locate himself/herself on the map. During the pointing tasks, the subjects were asked to think aloud. The data from the experiment were used to analyze the effect of the GPS on the time needed to perform the task. The subjects verbal data was used to assess the effect of the GPS on the number of landmark concepts mentioned during a task (landmark concepts are words referring to objects that can be recognized both on the map and in the environment). Results and conclusions: The results from the experiment indicate that the GPS reduces the time needed to locate oneself on a map. The analysis of the verbal data revealed that the GPS reduces the number of landmark concepts in the protocols. The findings suggest that the GPS guides the subject s search for the map-environment points and narrows the area on the map that must be searched for self-location.
Resumo:
The object of this research is to study the mineralogy of the diabase dykes in Suomussalmi and the relevance of the mineralogy to tectonic events, specifically large block movements in the Archaean crust. Sharp tectonic lines separate two anomalies in the dyke swarms, shown on a geomagnetic map as positive anomalies. In one of these areas, the Toravaara anomaly, the diabases seem to contain pyroxenes as a main component. Outside the Toravaara anomaly hornblende is the main ferromagnesian mineral in diabases. The aim of this paper is to research the differences in the diabases inside and outside the anomalies and interpret the processes that formed the anomalies. The data for this sudy consist of field observations, 120 thin sections, 334 electron microprobe analyses, 19 whole-rock chemical analyses, a U-Pb age analysis and geomagnetic low-altitude aerial survey maps. The methods are interpretation of field observations, chemical analyses, microprobe analyses of single minerals and radiometric age determination, microscopic studies of the thin sections, geothermometers and geobarometers. On the basis of field observations and petrographic studies the diabases in the area are divided into pyroxene diabases, hornblende diabases and the Lohisärkkä porphyritic dyke swarm. Hornblende diabases are found in the entire study area, while the pyroxene diabases concentrate on the area of the Toravaara geomagnetic anomaly. The Lohisärkkä swarm transects the whole area as a thin line from east to west. The diabases are fairly homogenous both chemically and by mineral composition. The few exceptions are part of rarer older swarms or are significantly altered. The Lohisärkkä dyke swarm was dated as 2,21 Ga old, significantly older than the most common 1,98 Ga swarm in the area. The geothermometers applied showed that the diabases on the Toravaara anomaly were stabilized at a much higher temperature than the dykes outside the anomaly. The geobarometers showed the pyroxenes to have crystallized at varying depths. The research showed the Toravaara anomaly to have formed by a vertical block movement, and the fault on its west side to have a total lateral transfer of only a few kilometers. The formation of the second anomaly was also interpreted to be tectonic in nature. In addition, the results of the geothermobarometry uncovered necessary conditions for the study of diabase emplacement depth: the minerals for the study must be chosen by minimum crystallization depth, and a geobarometer capable of determining the magmatic temperature must be used. In addition, it would be more suitable to conduct this kind of study in an area where the dykes are more exposed.