3 resultados para décès

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PATHOGENIC MECHANISMS OF PLOSL Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), also known as Nasu-Hakola disease, is a recessively inherited disease of brain and bone. PLOSL manifests as early-onset progressive dementia and bone fractures. Mutations in the TYROBP (DAP12) and TREM2 genes have been identified as the primary cause of PLOSL. DAP12 and TREM2 encode important signalling molecules in cells of the innate immune system. The mechanism by which loss-of-function of the DAP12/TREM2 signalling complex leads to PLOSL is currently unknown. The aim of this thesis work was to gain insight into the pathogenic mechanisms behind PLOSL. To first identify the central nervous system (CNS) cell types that express both Dap12 and Trem2, the expression patterns of Dap12 and Trem2 in mouse CNS were analyzed. Dap12 and Trem2 expression was seen from embryonic stage to adulthood and microglial cells and oligodendrocytes were identified as the major Dap12/Trem2 producing cells of the CNS. To subsequently identify the pathways and biological processes associated with DAP12/TREM2 mediated signalling in human cells, genome wide transcript analysis of in vitro differentiated dendritic cells (DCs) of PLOSL patients representing functional knockouts of either DAP12 or TREM2 was performed. Both DAP12 and TREM2 deficient cells differentiated into DCs and responded to pathogenic stimuli. However, the DCs showed morphological differences compared to control cells due to defects in the actin filaments. Transcript profiles of the patient DCs showed differential expression of genes involved in immune response and for genes earlier associated with other disorders of the CNS as well as genes involved in the remodeling of bone, linking the findings with the tissue phenotype of PLOSL patients. To analyze the effect of Dap12 deficiency in the CNS, genome wide expression analysis of Dap12 deficient mouse brain and Dap12 deficient microglia as well as functional analysis of Dap12 deficient microglia was performed. Regulation of several pathways involved in synaptic function and transcripts coding for the myelin components was seen in Dap12 knockout mice. Decreased migration, morphological changes and shortened lifespan of the Dap12 knockout microglia was further observed. Taken together, this thesis work showed that both Dap12 and Trem2 are expressed by CNS microglia and that Dap12 deficiency results in functional defects of these cells. Lack of Dap12 in the CNS also leads to synaptic abnormalities even before pathological changes are seen in the tissue level.This work further showed that loss-of-function of DAP12 or TREM2 leads to changes in morphology and gene expression in human dendritic cells. These data underline the functional diversity of the molecules of the innate immune system and implies their significant contribution also in demyelinating CNS disorders, including those resulting in dementia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of antigen-presenting cells (APCs), macrophages and dendritic cells (DCs), function at the interface of innate and adaptive immunity. Through recognition of conserved microbial patterns, they are able to detect the invading pathogens. This leads to activation of signal transduction pathways that in turn induce gene expression of various molecules required for immune responses and eventually pathogen clearance. Cytokines are among the genes induced upon detection of microbes. They play an important role in regulating host immune responses during microbial infection. Chemotactic cytokines, chemokines, are involved in migratory events of immune cells. Cytokines also promote the differentiation of distinct T cell responses. Because of the multiple roles of cytokines in the immune system, the cytokine network needs to be tightly regulated. In this work, the induction of innate immune responses was studied using human primary macrophages or DCs as cell models. Salmonella enterica serovar Typhimurium served as a model for an intracellular bacterium, whereas Sendai virus was used in virus experiments. The starting point of this study was that DCs of mouse origin had recently been characterized as host cells for Salmonella. However, only little was known about the immune responses initiated in Salmonella-infected human DCs. Thus, cellular responses of macrophages and DCs, in particular the pattern of cytokine production, to Salmonella infection were compared. Salmonella-induced macrophages and DCs were found to produce multiple cytokines including interferon (IFN) -gamma, which is conventionally produced by T and natural killer (NK) cells. Both macrophages and DCs also promoted the intracellular survival of the bacterium. Phenotypic maturation of DCs as characterized by upregulation of costimulatory and human leukocyte antigen (HLA) molecules, and production of CCL19 chemokine, were also detected upon infection with Salmonella. Another focus of this PhD work was to unravel the regulatory events controlling the expression of cytokine genes encoding for CCL19 and type III IFNs, which are central to DC biology. We found that the promoters of CCL19 and type III IFNs contain similar regulatory elements that bind nuclear factor kappaB (NF-kappaB) and interferon regulatory factors (IRFs), which could mediate transcriptional activation of the genes. The regulation of type III IFNs in virus infection resembled that of type I IFNs a cytokine class traditionally regarded as antiviral. The induction of type I and type III IFNs was also observed in response to bacterial infection. Taken together, this work identifies new details about the interaction of Salmonella with its phagocytic host cells of human origin. In addition, studies provide information on the regulatory events controlling the expression of CCL19 and the most recently identified IFN family genes, type III IFN genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.