8 resultados para concise topological description

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A smooth map is said to be stable if small perturbations of the map only differ from the original one by a smooth change of coordinates. Smoothly stable maps are generic among the proper maps between given source and target manifolds when the source and target dimensions belong to the so-called nice dimensions, but outside this range of dimensions, smooth maps cannot generally be approximated by stable maps. This leads to the definition of topologically stable maps, where the smooth coordinate changes are replaced with homeomorphisms. The topologically stable maps are generic among proper maps for any dimensions of source and target. The purpose of this thesis is to investigate methods for proving topological stability by constructing extremely tame (E-tame) retractions onto the map in question from one of its smoothly stable unfoldings. In particular, we investigate how to use E-tame retractions from stable unfoldings to find topologically ministable unfoldings for certain weighted homogeneous maps or germs. Our first results are concerned with the construction of E-tame retractions and their relation to topological stability. We study how to construct the E-tame retractions from partial or local information, and these results form our toolbox for the main constructions. In the next chapter we study the group of right-left equivalences leaving a given multigerm f invariant, and show that when the multigerm is finitely determined, the group has a maximal compact subgroup and that the corresponding quotient is contractible. This means, essentially, that the group can be replaced with a compact Lie group of symmetries without much loss of information. We also show how to split the group into a product whose components only depend on the monogerm components of f. In the final chapter we investigate representatives of the E- and Z-series of singularities, discuss their instability and use our tools to construct E-tame retractions for some of them. The construction is based on describing the geometry of the set of points where the map is not smoothly stable, discovering that by using induction and our constructional tools, we already know how to construct local E-tame retractions along the set. The local solutions can then be glued together using our knowledge about the symmetry group of the local germs. We also discuss how to generalize our method to the whole E- and Z- series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular membrane alterations are hallmarks of positive-sense RNA (+RNA) virus replication. Strong evidence indicates that within these exotic compartments, viral replicase proteins engage in RNA genome replication and transcription. To date, fundamental questions such as the origin of altered membranes, mechanisms of membrane deformation and topological distribution and function of viral components, are still waiting for comprehensive answers. This study addressed some of the above mentioned questions for the membrane alterations induced during Semliki Forest virus (SFV) infection of mammalian cells. With the aid of electron and fluorescence microscopy coupled with radioactive labelling and immuno-cytochemistry techniques, our group and others showed that few hours after infection the four non structural proteins (nsP1-4) and newly synthesized RNAs of SFV colocalized in close proximity of small membrane invaginations, designated as spherules . These 50-70 nm structures were mainly detected in the perinuclear area, at the limiting membrane of modified endosomes and lysosomes, named CPV-I (cytopathic vacuoles type I). More rarely, spherules were also found at the plasma membrane (PM). In the first part of this study I present the first three-dimensional reconstruction of the CPV-I and the spherules, obtained by electron tomography after chemical or cryo-fixation. Different approaches for imaging these macromolecular assemblies to obtain better structure preservation and higher resolution are presented as unpublished data. This study provides insights into spherule organization and distribution of viral components. The results of this and other experiments presented in this thesis will challenge currently accepted models for virus replication complex formation and function. In a revisitation of our previous models, the second part of this work provides the first complete description of the biogenesis of the CPV-I. The results demonstrate that these virus-induced vacuoles, where hundreds of spherules accumulate at late stages during infection, represent the final phase of a journey initiated at the PM, which apparently serves as a platform for spherule formation. From the PM spherules were internalized by an endocytic event that required the activity of the class I PI3K, caveolin-1, cellular cholesterol and functional actin-myosin network. The resulting neutral endocytic carrier vesicle delivered the spherules to the membrane of pre-existing acidic endosomes via multiple fusion events. Microtubule based transport supported the vectorial transfer of these intermediates to the pericentriolar area where further fusions generated the CPV-I. A signal for spherule internalization was identified in one of the replicase proteins, nsP3. Infections of cells with viruses harbouring a deletion in a highly phosphorylated region of nsP3 did not result in the formation of CPV-Is. Instead, thousands of spherules remained at the PM throughout the infection cycle. Finally, the role of the replicase protein nsP2 during viral RNA replication and transcription was investigated. Three enzymatic activities, protease, NTPase and RNA-triphosphatase were studied with the aid of temperature sensitive mutants in vitro and, when possible, in vivo. The results highlighted the interplay of the different nsP2 functions during different steps of RNA replication and sub-genomic promoter regulation, and suggest that the protein could have different activities when participating in the replication complex or as a free enzyme.