2 resultados para concentration quenching model

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lignin is a hydrophobic polymer that is synthesised in the secondary cell walls of all vascular plants. It enables water conduction through the stem, supports the upright growth habit and protects against invading pathogens. In addition, lignin hinders the utilisation of the cellulosic cell walls of plants in pulp and paper industry and as forage. Lignin precursors are synthesised in the cytoplasm through the phenylpropanoid pathway, transported into the cell wall and oxidised by peroxidases or laccases to phenoxy radicals that couple to form the lignin polymer. This study was conducted to characterise the lignin biosynthetic pathway in Norway spruce (Picea abies (L.) Karst.). We focused on the less well-known polymerisation stage, to identify the enzymes and the regulatory mechanisms that are involved. Available data for lignin biosynthesis in gymnosperms is scarce and, for example, the latest improvements in precursor biosynthesis have only been verified in herbaceous plants. Therefore, we also wanted to study in detail the roles of individual gene family members during developmental and stress-induced lignification, using EST sequencing and real-time RT-PCR. We used, as a model, a Norway spruce tissue culture line that produces extracellular lignin into the culture medium, and showed that lignin polymerisation in the tissue culture depends on peroxidase activity. We identified in the culture medium a significant NADH oxidase activity that could generate H2O2 for peroxidases. Two basic culture medium peroxidases were shown to have high affinity to coniferyl alcohol. Conservation of the putative substrate-binding amino acids was observed when the spruce peroxidase sequences were compared with other peroxidases with high affinity to coniferyl alcohol. We also used different peroxidase fractions to produce synthetic in vitro lignins from coniferyl alcohol; however, the linkage pattern of the suspension culture lignin could not be reproduced in vitro with the purified peroxidases, nor with the full complement of culture medium proteins. This emphasised the importance of the precursor radical concentration in the reaction zone, which is controlled by the cells through the secretion of both the lignin precursors and the oxidative enzymes to the apoplast. In addition, we identified basic peroxidases that were reversibly bound to the lignin precipitate. They could be involved, for example, in the oxidation of polymeric lignin, which is required for polymer growth. The dibenzodioxocin substructure was used as a marker for polymer oxidation in the in vitro polymerisation studies, as it is a typical substructure in wood lignin and in the suspension culture lignin. Using immunolocalisation, we found the structure mainly in the S2+S3 layers of the secondary cell walls of Norway spruce tracheids. The structure was primarily formed during the late phases of lignification. Contrary to the earlier assumptions, it appears to be a terminal structure in the lignin macromolecule. Most lignin biosynthetic enzymes are encoded for by several genes, all of which may not participate in lignin biosynthesis. In order to identify the gene family members that are responsible for developmental lignification, ESTs were sequenced from the lignin-forming tissue culture and developing xylem of spruce. Expression of the identified lignin biosynthetic genes was studied using real-time RT-PCR. Candidate genes for developmental lignification were identified by a coordinated, high expression of certain genes within the gene families in all lignin-forming tissues. However, such coordinated expression was not found for peroxidase genes. We also studied stress-induced lignification either during compression wood formation by bending the stems or after Heterobasidion annosum infection. Based on gene expression profiles, stress-induced monolignol biosynthesis appeared similar to the developmental process, and only single PAL and C3H genes were specifically up-regulated by stress. On the contrary, the up-regulated peroxidase genes differed between developmental and stress-induced lignification, indicating specific responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic periodontitis results from a complex aetiology, including the formation of a subgingival biofilm and the elicitation of the host s immune and inflammatory response. The hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue destruction. Evidence supports that periodontitis progresses in dynamic states of exacerbation and remission or quiescence. The major clinical approach to identify disease progression is the tolerance method, based on sequential probing. Collagen degradation is one of the key events in periodontal destructive lesions. Matrix metalloproteinase (MMP)-8 and MMP-13 are the primary collagenolytic MMPs that are associated with the severity of periodontal inflammation and disease, either by a direct breakdown of the collagenised matrix or by the processing of non-matrix bioactive substrates. Despite the numerous host mediators that have been proposed as potential biomarkers for chronic periodontitis, they reflect inflammation rather than the loss of periodontal attachment. The aim of the present study was to determine the key molecular MMP-8 and -13 interactions in gingival crevicular fluid (GCF) and gingival tissue from progressive periodontitis lesions and MMP-8 null allele mouse model. In study (I), GCF and gingival biopsies from active and inactive sites of chronic periodontitis patients, which were determined clinically by the tolerance method, and healthy GCF were analysed for MMP-13 and tissue inhibitor of matrix metalloproteinases (TIMP)-1. Chronic periodontitis was characterised by increased MMP-13 levels and the active sites showed a tendency of decreased TIMP-1 levels associated with increments of MMP-13 and total protein concentration compared to inactive sites. In study (II), we investigated whether MMP-13 activity was associated with TIMP-1, bone collagen breakdown through ICTP levels, as well as the activation rate of MMP-9 in destructive lesions. The active sites demonstrated increased GCF ICTP levels as well as lowered TIMP-1 detection along with elevated MMP-13 activity. MMP-9 activation rate was enhanced by MMP-13 in diseased gingival tissue. In study (III), we analysed the potential association between the levels, molecular forms, isoenzyme distribution and degree of activation of MMP-8, MMP-14, MPO and the inhibitor TIMP-1 in GCF from periodontitis progressive patients at baseline and after periodontal therapy. A positive correlation was found for MPO/MMP-8 and their levels associated with progression episodes and treatment response. Because MMP-8 is activated by hypochlorous acid in vitro, our results suggested an interaction between the MPO oxidative pathway and MMP-8 activation in GCF. Finally, in study (IV), on the basis of the previous finding that MMP-8-deficient mice showed impaired neutrophil responses and severe alveolar bone loss, we aimed to characterise the detection patterns of LIX/CXCL5, SDF-1/CXCL12 and RANKL in P. gingivalis-induced experimental periodontitis and in the MMP-8-/- murine model. The detection of neutrophil-chemoattractant LIX/CXCL5 was restricted to the oral-periodontal interface and its levels were reduced in infected MMP-8 null mice vs. wild type mice, whereas the detection of SDF-1/CXCL12 and RANKL in periodontal tissues increased in experimentally-induced periodontitis, irrespectively from the genotype. Accordingly, MMP-8 might regulate LIX/CXCL5 levels by undetermined mechanisms, and SDF-1/CXCL12 and RANKL might promote the development and/or progression of periodontitis.