4 resultados para cold-rolled Fe-Mn-Si alloy

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low solubility of iron (Fe) depresses plant growth in calcareous soils. In order to improve Fe availability, calcareous soils are treated with synthetic ligands, such as ethylenediaminetetraacetic acid (EDTA) and ethylenediimi-nobis(2-hydroxyphenyl)acetic acid (EDDHA). However, high expenses may hinder their use (EDDHA), and the recalcitrance of EDTA against biodegra-dation may increase the potential of cadmium (Cd) and lead (Pb) leaching. This study evaluated the ability of biodegradable ligands, i.e. different stereo-isomers of ethylenediaminedisuccinic acid (EDDS), to provide Fe for lettuce (Lactuca sativa L.) and ryegrass (Lolium perenne cv. Prego), their effects on uptake of other elements and solubility in soils and their subsequent effects on the activity of oxygen-scavenging enzymes in lettuce. Both EDTA and EDDHA were used as reference ligands. In unlimed and limed quartz sand both FeEDDS(S,S) and a mixture of stereo-isomers of FeEDDS (25% [S,S]-EDDS, 25% [R,R]-EDDS and 50% [S,R]/[R,S]-EDDS), FeEDDS(mix), were as efficient as FeEDTA and FeEDDHA in providing lettuce with Fe. However, in calcareous soils only FeEDDS(mix) was comparable to FeEDDHA when Fe was applied twice a week to mimic drip irrigation. The Fe deficiency increased the manganese (Mn) concentration in lettuce in both acidic and alkaline growth media, whereas Fe chelates depressed it. The same was observed with zinc (Zn) and copper (Cu) in acidic growth media. EDDHA probably affected the hormonal status of lettuce as well and thus depressed the uptake of Zn and Mn even more. The nutrient concentrations of ryegrass were only slightly affected by the Fe availability. After Fe chelate splitting in calcareous soils, EDDS and EDTA increased the solubility of Zn and Cu most, but only the Zn concentration was increased in lettuce. The availability of Fe increased the activity of oxygen-scavenging enzymes (ascorbate peroxidase, guaiacol peroxidase, catalase). The activity of Cu/ZnSOD (Cu/Zn superoxide dismutase) and MnSOD in lettuce leaves followed the concentrations of Zn and Mn. In acidic quartz sand low avail-ability of Fe increased the cobalt (Co) and nickel (Ni) concentrations in let-tuce, but Fe chelates decreased them. EDTA increased the solubility of Cd and Pb in calcareous soils, but not their uptake. The biodegradation of EDDS was not affected by the complexed element, and [S,S]-EDDS was biodegraded within 28 days in calcareous soils. EDDS(mix) was more recalcitrant, and after 56 days of incubation water-soluble elements (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) corresponded to 10% of the added EDDS(mix) concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contamination of urban streams is a rising topic worldwide, but the assessment and investigation of stormwater induced contamination is limited by the high amount of water quality data needed to obtain reliable results. In this study, stream bed sediments were studied to determine their contamination degree and their applicability in monitoring aquatic metal contamination in urban areas. The interpretation of sedimentary metal concentrations is, however, not straightforward, since the concentrations commonly show spatial and temporal variations as a response to natural processes. The variations of and controls on metal concentrations were examined at different scales to increase the understanding of the usefulness of sediment metal concentrations in detecting anthropogenic metal contamination patterns. The acid extractable concentrations of Zn, Cu, Pb and Cd were determined from the surface sediments and water of small streams in the Helsinki Metropolitan region, southern Finland. The data consists of two datasets: sediment samples from 53 sites located in the catchment of the Stream Gräsanoja and sediment and water samples from 67 independent catchments scattered around the metropolitan region. Moreover, the sediment samples were analyzed for their physical and chemical composition (e.g. total organic carbon, clay-%, Al, Li, Fe, Mn) and the speciation of metals (in the dataset of the Stream Gräsanoja). The metal concentrations revealed that the stream sediments were moderately contaminated and caused no immediate threat to the biota. However, at some sites the sediments appeared to be polluted with Cu or Zn. The metal concentrations increased with increasing intensity of urbanization, but site specific factors, such as point sources, were responsible for the occurrence of the highest metal concentrations. The sediment analyses revealed, thus a need for more detailed studies on the processes and factors that cause the hot spot metal concentrations. The sediment composition and metal speciation analyses indicated that organic matter is a very strong indirect control on metal concentrations, and it should be accounted for when studying anthropogenic metal contamination patterns. The fine-scale spatial and temporal variations of metal concentrations were low enough to allow meaningful interpretation of substantial metal concentration differences between sites. Furthermore, the metal concentrations in the stream bed sediments were correlated with the urbanization of the catchment better than the total metal concentrations in the water phase. These results suggest that stream sediments show true potential for wider use in detecting the spatial differences in metal contamination of urban streams. Consequently, using the sediment approach regional estimates of the stormwater related metal contamination could be obtained fairly cost-effectively, and the stability and reliability of results would be higher compared to analyses of single water samples. Nevertheless, water samples are essential in analysing the dissolved concentrations of metals, momentary discharges from point sources in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historical sediment nutrient concentrations and heavy-metal distributions were studied in five embayments in the Gulf of Finland and an adjacent lake. The main objective of the study was to examine the response of these water bodies to temporal changes in human activities. Sediment cores were collected from the sites and dated using 210Pb and 137Cs. The cores were analyzed for total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), biogenic silica (BSi), loss on ignition (LOI), grain size, Cu, Zn, Al, Fe, Mn, K, Ca, Mg and Na. Principal component analysis (PCA) was used to summarize the trends in the geochemical variables and to compare trends between the different sites. The links between the catchment land use and sediment geochemical data were studied using a multivariate technique of redundancy analysis (RDA). Human activities produce marked geochemical variations in coastal sediments. These variations and signals are often challenging to interpret due to various sedimentological and post-depositional factors affecting the sediment profiles. In general, the sites studied here show significant upcore increases in sedimentation rates, TP and TN concentrations. Also Cu, which is considered to be a good indicator of anthropogenic influence, showed clear increases from 1850 towards the top part of the cores. Based on the RDA-analysis, in the least disturbed embayments with high forest cover, the sediments are dominated by lithogenic indicators Fe, K, Al and Mg. In embayments close to urban settlement, the sediments have high Cu concentrations and a high sediment Fe/Mn ratio. This study suggests that sediment accumulation rates vary significantly from site to site and that the overall sedimentation can be linked to the geomorphology and basin bathymetry, which appear to be the major factors governing sedimentation rates; i.e. a high sediment accumulation rate is not characteristic either to urban or to rural sites. The geochemical trends are strongly site specific and depend on the local geochemical background, basin characteristics and anthropogenic metal and nutrient loading. Of the studied geochemical indicators, OP shows the least monotonic trends in all studied sites. When compared to other available data, OP seems to be the most reliable geochemical indicator describing the trophic development of the study sites, whereas Cu and Zn appear to be good indicators for anthropogenic influence. As sedimentation environments, estuarine and marine sites are more complex than lacustrine basins with multiple sources of sediment input and more energetic conditions in the former. The crucial differences between lacustrine and estuarine/coastal sedimentation environments are mostly related to Fe. P sedimentation is largely governed by Fe redox-reactions in estuarine environments. In freshwaters, presence of Fe is clearly linked to the sedimentation of other lithogenic metals, and therefore P sedimentation and preservation has a more direct linkage to organic matter sedimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study area, Vihtamonjoki catchment area, is 55 square kilometres and a third of it has been ditched. The largest ditchings have been done in years 1959-1970. The water system in the catchment area builds up of several lake basins, brooks and rivers. This study tries to discover the water quality at present. It also tries to determine the sedimentation rate and the changes on the sediment quality during the past decades. The water samples were collected in August 2003 and in March 2004 from several places in the catchment area. On March 2004 the sediment samples were collected from four lake basins. Organic matter, total phosphorus, iron, manganese, Fe/Mn-ratio, zinc and copper were determined from sediment samples. The water quality was determined by electric conductivity, alkalinity, pH, oxygen content and the content of sodium, potassium, magnesium, calcium, sulphate, chlorine and fluoride. Also the nutrients, nitrate, ammonium and phosphate, were determined. Chemical analyses and loss on ignition analyses showed clear changes in sediment quality in samples taken from 15-25 cm depth, thus showing the time of the ditching. In most cases the forest ditching had caused increase in mineral matter, iron, zinc and copper and decrease in total phosphorus and organic matter. Sedimentation rates vary between 4,1 to 6,7 mm/year in lakes after the forest ditching. Sedimentation rates have probably increased due to the forest ditching. The Fe/Mn-ratio shows that there has been a lack of oxygen in the lakes for some years after the forest ditching. The water quality proved to be normal in the Vihtamonjoki catchment area. Oxygen content in March 2004 pointed to the conclusion that there might be lack of oxygen in winter. Other analysis showed the water quality to be typical for the Kainuu area.