3 resultados para ciprofloxacin

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter jejuni and C. coli are the leading causes of human bacterial gastroenteritis in developed countries. Most human Campylobacter infections are sporadic and a seasonal peak in the distribution of infections can be seen in the summer months in several countries, including Finland. A variety of risk factors for Campylobacter infections have been identified; handling and eating poultry, drinking unpasteurized milk, contact with domestic animals, and travelling abroad. However, the relative importance of the different risk factors in sporadic cases of Campylobacter infection remains unknown. In most cases, the infection is self-limiting and no specific treatment is required. Campylobacter enteritis can cause a wide range of complications, including reactive arthritis (ReA) that is reported in 1-5% of the cases. Seven clinical microbiology laboratories serving different geographical areas of Finland, participated in this multi-centre study, conducted during a seasonal peak in 2002. In a matched case-control study, domestically-acquired sporadic Campylobacter infections from three geographical areas were collected. The final study comprised 100 cases and 137 controls. Risk factors for sporadic domestically-acquired Campylobacter infections were identified on the basis of a questionnaire; swimming in natural waters was found to be a novel risk factor for Campylobacter infection. Other independent risk factors were tasting or eating raw or undercooked meat and drinking untreated water from a dug well. The role of bacterial strain and host characteristics are not fully understood in Campylobacter infections. Exposure factors, demographical characteristics, and the serotype of the Campylobacter isolate may affect the severity of the enteritis. This cross-sectional study comprised 114 patients with C. jejuni enteritis, diagnosed in three clinical microbiology laboratories; most of the patients had participated in the previous case-control study. Swimming was associated with age ≤ 5 years and serotype Pen 6,7 was found significantly more often among patients reporting swimming. The geographical distribution among serotypes varied; serotype Pen 4-complex appeared more often in patients from urban areas and serotype Pen 21 among patients from more rural areas. Thus, risk factors and sources of infection for C. jejuni infection may vary among individuals depending on age and geographical location. The in vitro susceptibilities of C. jejuni and C. coli strains isolated from patients infected abroad (85 strains) or domestically (393 strains) revealed that susceptibility to erythromycin is still high, even among isolates of foreign origin. However, the novel antimicrobial agent telithromycin did not offer any advantage over erythromycin; isolates with high minimal inhibitory concentrations (MICs) for erythromycin also showed reduced susceptibility to telithromycin. Reduced susceptibility to fluoroquinolones was detected almost exclusively among isolates of foreign origin and half of these isolates with high MICs for fluoroquinolones also showed elevated MICs for doxycycline. Questionnaires concerning complications associated with C. jejuni enteritis were sent to patients two months after becoming ill; 201 patients from seven different geographical areas were included in the study. Musculoskeletal complications after C. jejuni infection were commonly reported by patients (39%). The incidence of classical ReA was 4% and that of Achilles enthesopathy and/or heel pain 9%. Other C. jejuni-associated reactive joint symptoms were commonly reported, however, due to their milder nature seldom seen and diagnosed by a physician. The severity of the enteritis may predict further complications; stomach ache during enteritis was connected to the development of later joint pain. Early antimicrobial treatment, within two days from the start of symptoms, shortened the duration of diarrhoea by two days but did not prevent later musculoskeletal complications. Campylobacter is an important human enteropathogen and causes a significant burden of illness. As the incidence of Campylobacter infections is high, the importance of the infection and the occurrence of complications will increase. This stresses the importance of understanding the risk factors for acquiring Campylobacter infection and how bacterial strain and host characteristics may affect the risk for infection. The role of antimicrobial treatment for acute Campylobacter enteritis seems to be marginal and should be used restrictively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lidocaine is a widely used local anaesthetic agent that also has anti-arrhythmic effects. It is classified as a type Ib anti-arrhythmic agent and is used to treat ventricular tachycardia or ventricular fibrillation. Lidocaine is eliminated mainly by metabolism, and less than 5% is excreted unchanged in urine. Lidocaine is a drug with a medium to high extraction ratio, and its bioavailability is about 30%. Based on in vitro studies, the earlier understanding was that CYP3A4 is the major cytochrome P450 (CYP) enzyme involved in the metabolism of lidocaine. When this work was initiated, there was little human data on the effect of inhibitors of CYP enzymes on the pharmacokinetics of lidocaine. Because lidocaine has a low therapeutic index, medications that significantly inhibit lidocaine clearance (CL) could increase the risk of toxicity. These studies investigated the effects of some clinically important CYP1A2 and CYP3A4 inhibitors on the pharmacokinetics of lidocaine administered by different routes. All of the studies were randomized, double-blind, placebo-controlled cross-over studies in two or three phases in healthy volunteers. Pretreatment with clinically relevant doses of CYP3A4 inhibitors erythromycin and itraconazole or CYP1A2 inhibitors fluvoxamine and ciprofloxacin was followed by a single dose of lidocaine. Blood samples were collected to determine the pharmacokinetic parameters of lidocaine and its main metabolites monoethylglycinexylidide (MEGX) and 3-hydroxylidocaine (3-OH-lidocaine). Itraconazole and erythromycin had virtually no effect on the pharmacokinetics of intravenous lidocaine, but erythromycin slightly prolonged the elimination half-life (t½) of lidocaine (Study I). When lidocaine was taken orally, both erythromycin and itraconazole increased the peak concentration (Cmax) and the area under the concentration-time curve (AUC) of lidocaine by 40-70% (Study II). Compared with placebo and itraconazole, erythromycin increased the Cmax and the AUC of MEGX by 40-70% when lidocaine was given intravenously or orally (Studies I and II). The pharmacokinetics of inhaled lidocaine was unaffected by concomitant administration of itraconazole (Study III). Fluvoxamine reduced the CL of intravenous lidocaine by 41% and prolonged the t½ of lidocaine by 35%. The mean AUC of lidocaine increased 1.7-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine in-creased 3-fold and the Cmax 2.2-fold by fluvoxamine (Study V). During the pretreatment with fluvoxamine combined with erythromycin, the CL of intravenous lidocaine was 53% smaller than during placebo and 21% smaller than during fluvoxamine alone. The t½ of lidocaine was significantly longer during the combination phase than during the placebo or fluvoxamine phase. The mean AUC of intravenous lidocaine increased 2.3-fold and the Cmax 1.4-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine increased 3.6-fold and the Cmax 2.5-fold by concomitant fluvoxamine and erythromycin. The t½ of oral lidocaine was significantly longer during the combination phase than during the placebo (Study V). When lidocaine was given intravenously, the combination of fluvoxamine and erythromycin prolonged the t½ of MEGX by 59% (Study IV). Compared with placebo, ciprofloxacin increased the mean Cmax and AUC of intravenous lidocaine by 12% and 26%, respectively. The mean plasma CL of lidocaine was reduced by 22% and its t½ prolonged by 7% (Study VI). These studies clarify the principal role of CYP1A2 and suggest only a modest role of CYP3A4 in the elimination of lidocaine in vivo. The inhibition of CYP1A2 by fluvoxamine considerably reduces the elimination of lidocaine. Concomitant use of fluvoxamine and the CYP3A4 inhibitor erythromycin further increases lidocaine concentrations. The clinical implication of this work is that clinicians should be aware of the potentially increased toxicity of lidocaine when used together with inhibitors of CYP1A2 and particularly with the combination of drugs inhibiting both CYP1A2 and CYP3A4 enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytochrome P450 1A2 (CYP1A2) is one of the major metabolizing enzymes. The muscle relaxant tizanidine is a selective substrate of CYP1A2, and the non-steroidal anti-inflammatory drug (NSAID) rofecoxib was thought to modestly in-hibit it. Cases suggesting an interaction between tizanidine and rofecoxib had been reported, but the mechanism was unknown. Also other NSAIDs are often used in combination with muscle relaxants. The aims of this study were to investigate the effect of rofecoxib, several other NSAIDs and female sex steroids on CYP1A2 ac-tivity in vitro and in vivo, and to evaluate the predictability of in vivo inhibition based on in vitro data. In vitro, the effect of several NSAIDs, female sex steroids and model inhibitors on CYP1A2 activity was studied in human liver microsomes, without and with preincubation. In placebo controlled, cross-over studies healthy volunteers ingested a single dose of tizanidine after a pretreament with the inhibitor (rofecoxib, tolfenamic acid or celecoxib) or placebo. Plasma (and urine) concentrations of tizanidine and its metabolites were measured, and the pharmacodynamic effects were recorded. A caffeine test was also performed. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently in-hibited CYP1A2. Ethinylestradiol, celecoxib, desogestrel and zolmitriptan were moderate, and etodolac, ciprofloxacin, etoricoxib and gestodene were weak inhibi-tors of CYP1A2. At 100 µM, other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Rofecoxib was found to be a mechanism-based inhibitor of CYP1A2. In vivo, rofecoxib greatly increased the plasma concentrations (over ten-fold) and the pharmacodynamic effects of tizanidine. Also the metabolism of caf-feine was impaired by rofecoxib. Despite the relatively strong in vitro CYP1A2 inhibitory effects, tolfenamic acid and celecoxib did not have a significant effect on tizanidine and caffeine concentrations in humans. Competitive inhibition model and the free plasma concentration of the inhibitor predicted well the effect of fluvoxam-ine and the lack of effect of tolfenamic acid and celecoxib on tizanidine concentra-tions in humans, and mechanism-based inhibition model explained the effects of rofecoxib. However, the effects of ciprofloxacin and oral contraceptives were un-derestimated from the in vitro data. Rofecoxib is a potent mechanism-based inhibitor of CYP1A2 in vitro and in vivo. This mechanism may be involved in the adverse cardiovascular effects of rofecoxib. Tolfenamic acid and celecoxib seem to be safe in combination with tizanidine, but mefenamic acid might have some effect on tizanidine concentrations in vivo. Con-sidering the mechanism of inhibition, and using the free plasma concentration of the inhibitor, many but not all CYP1A2 interactions can be predicted from in vitro data.