43 resultados para cellular migration
em Helda - Digital Repository of University of Helsinki
Resumo:
Neurotrophic factors play essential role in the development and functioning of the nervous system and other organs. Glial cell line-Derived Neurotrophic Factor (GDNF) family ligands (GFLs) are of particular interest because they promote the survival of dopaminergic neurons in vitro, in Parkinson s disease animal models and in patients. GDNF is also a potent survival factor for the central motoneurons and thus is considered as a potential lead for the treatment of amyotrophic lateral sclerosis. The survival promoting receptor complex for GFLs consists of a ligand-specific co-receptor, GFRα and a signal transducing module, receptor tyrosine kinase RET. At least GDNF and persephin, a GFL, have established functions outside central nervous system. GDNF is crucial for enteric nervous system and kidney development as well as for spermatogenesis. Persephin controls calcitonin secretion. Communication between cells often occurs in the extracellular matrix (ECM), a meshwork, which is secreted and deposited by the cells and is mainly composed of fibrillar proteins and polymerized sugars. We evaluated the relationship between GFLs and extracellular matrix components and demonstrated that three GFLs - GDNF, neurturin and artemin bind heparan sulfates with nanomolar affinities. The fourth member of the family - persephin binds these polysaccharides thousand times less tightly. GDNF, neurturin and artemin also bind with high affinity to heparan sulfate proteoglycan (HSPG) isolated from the nervous system, syndecan-3. GDNF signals through HSPGs, evoking Src family kinase activation. This signaling induces cell spreading, hippocampal neurite outgrowth in vitro and cellular migration. Specifically, GDNF signaling through syndecan-3 is important for embryonic cortical neuron migration. Syndecan-3-deficient mice, similarly to mice lacking GDNF, have less GABAergic neurons in their cortex, as compared to the wild-type mice. This fact provides indirect evidence that GDNF interaction with syndecan-3 is important for cortical brain development. Noteworthy, in non-neuronal tissues GFLs may signal via other syndecans. We also present the structural model for a GDNF co-receptor, GFRα1. The X-ray structure of the GFRα1 domain 3 was solved with 1.8 Å resolution, revealing a new protein fold. Later we also solved the structure of the truncated GFRα1 in the complex with GDNF and this model was confirmed by site-directed mutagenesis. In summary, our work contributed to the structural characterization of GFRα-based receptor complex and revealed a new receptor for GDNF, neurturin and artemin the HSPG syndecan-3. This information is critically important for the development of GFRα/RET agonists for the treatment of neurodegenerative diseases.
Resumo:
Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.
Resumo:
Cathepsin D (CTSD) is a lysosomal protease, the deficiency of which is fatal and associated with neurodegeneration. CTSD knock-out mice, which die at the age of four weeks, show intestinal necrosis, loss of lymphoid cells and moderate pathological changes in the brain. An active-site mutation in the CTSD gene underlies a neurodegenerative disease in newborn sheep, characterized by brain atrophy without any changes to visceral tissues. The CTSD deficiences belong to the group of neuronal ceroid-lipofuscinoses (NCLs), severe neurodegenerative lysosomal storage disorders. The aim of this thesis was to examine the molecular and cellular mechanisms behind neurodegeneration in CTSD deficiency. We found the developmental expression pattern of CTSD to resemble that of synaptophysin and the increasing expression of CTSD to coincide with the active period of myelination in the rat brain, suggesting a role for CTSD in early rat brain development. An active-site mutation underlying the congenital ovine NCL not only affected enzymatic activity, but also changed the stability, processing and transport of the mutant protein, possibly contributing to the disease pathogenesis. We also provide CTSD deficiency as a first molecular explanation for human congenital NCL, a lysosomal storage disorder, characterized by neuronal loss and demyelination in the central nervous system. Finally, we show the first evidence for synaptic abnormalities and thalamocortical changes in CTSD-deficient mice at the molecular and ultrastructural levels. Keywords: cathepsin D, congenital, cortex, lysosomal storage disorder, lysosome, mutation, neurodegeneration, neuronal ceroid-lipofuscinosis, overexpression, synapse, thalamus
Resumo:
Distinct endogenous network events, generated independently of sensory input, are a general feature of various structures of the immature central nervous system. In the immature hippocampus, these type of events are seen as "giant depolarizing potentials" (GDPs) in intracellular recordings in vitro. GABA, the major inhibitory neurotransmitter of the adult brain, has a depolarizing action in immature neurons, and GDPs have been proposed to be driven by GABAergic transmission. Moreover, GDPs have been thought to reflect an early pattern that disappears during development in parallel with the maturation of hyperpolarizing GABAergic inhibition. However, the adult hippocampus in vivo also generates endogenous network events known as sharp (positive) waves (SPWs), which reflect synchronous discharges of CA3 pyramidal neurons and are thought to be involved in cognitive functions. In this thesis, mechanisms of GDP generation were studied with intra- and extracellular recordings in the neonatal rat hippocampus in vitro and in vivo. Immature CA3 pyramidal neurons were found to generate intrinsic bursts of spikes and to act as cellular pacemakers for GDP activity whereas depolarizing GABAergic signalling was found to have a temporally non-patterned facilitatory role in the generation of the network events. Furthermore, the data indicate that the intrinsic bursts of neonatal CA3 pyramidal neurons and, consequently, GDPs are driven by a persistent Na+ current and terminated by a slow Ca2+-dependent K+ current. Gramicidin-perforated patch recordings showed that the depolarizing driving force for GABAA receptor-mediated actions is provided by Cl- uptake via the Na-K-C1 cotransporter, NKCC1, in the immature CA3 pyramids. A specific blocker of NKCC1, bumetanide, inhibited SPWs and GDPs in the neonatal rat hippocampus in vivo and in vitro, respectively. Finally, pharmacological blockade of the GABA transporter-1 prolonged the decay of the large GDP-associated GABA transients but not of single postsynaptic GABAA receptor-mediated currents. As a whole the data in this thesis indicate that the mechanism of GDP generation, based on the interconnected network of bursting CA3 pyramidal neurons, is similar to that involved in adult SPW activity. Hence, GDPs do not reflect a network pattern that disappears during development but they are the in vitro counterpart of neonatal SPWs.
Resumo:
One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.
Resumo:
The Enamel matrix derivative Emdogain® (EMD) is a commercially available tissue extract preparation of porcine enamel origin. Studies have shown EMD to be clinically useful in promoting periodontal regeneration. EMD has been widely used in periodontal therapy for over ten years, but the mechanism of its action and the exact composition are not completely clear. EMD is predominantly amelogenin (>90%). However, unlike amelogenin, EMD has a number of growth factor-like effects and it has been shown to enhance the proliferation, migration and other cellular functions of periodontal ligament fibroblasts and osteoblasts. In contrast, the effects of EMD on epithelial cell lines and in particular on oral malignant cells have not been adequately studied. In addition, EMD has effects on the production of cytokines by several oral cell lines and the product is in constant interaction with different oral enzymes. Regardless of the various unknown properties of EMD, it is said to be clinically safe in regenerative procedures, also in medically compromised patients. The aim of the study was to examine whether gingival crevicular fluid (GCF), which contains several different proteolysis enzymes, could degrade EMD and alter its biological functions. In addition, the objective was to study the effects of EMD on carcinogenesis-related factors, in particular MMPs, using in vitro and in vivo models. This study also aimed to contribute to the understanding of the composition of EMD. GCF was capable of degrading EMD, depending on the periodontal status, with markedly more degradation in all states of periodontal disease compared to healthy controls. EMD was observed to stimulate the migration of periodontal ligament fibroblasts (PLF), whereas EMD together with GCF could not stimulate this proliferation. In addition, recombinant amelogenin, the main component of EMD, decreased the migration of PLFs. A comparison of changes induced by EMD and TGF-β1 in the gene profiles of carcinoma cells showed TGF-β1 to regulate a greater number of genes than EMD. However, both of the study reagents enhanced the expression of MMP-10 and MMP-9. Furthermore, EMD was found to induce several factors closely related to carcinogenesis on gene, protein, cell and in vivo levels. EMD enhanced the production of MMP-2, MMP-9 and MMP-10 proteins by cultured carcinoma cells. In addition, EMD stimulated the migration and in vitro wound closure of carcinoma cells. EMD was also capable of promoting metastasis formation in mice. In conclusion, the diseased GCF, containing various proteases, causes degradation of EMD and decreased proliferation of PLFs. Thus, this in vitro study suggests that the regenerative effect of EMD may decrease due to proteases present in periodontal tissues during the inflammation and healing of the tissues in vivo. Furthermore, EMD was observed to enhance several carcinoma-related factors and in particular the production of MMPs by benign and malignant cell lines. These findings suggest that the clinical safety of EMD with regard to dysplastic mucosal lesions should be further investigated.
Resumo:
Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.
Resumo:
Critical cellular decisions such as should the cell proliferate, migrate or differentiate, are regulated by stimulatory signals from the extracellular environment, like growth factors. These signals are transformed to cellular responses through their binding to specific receptors present at the surface of the recipient cell. The epidermal growth factor receptor (EGF-R/ErbB) pathway plays key roles in governing these signals to intracellular events and cell-to-cell communication. The EGF-R forms a signaling network that participates in the specification of cell fate and coordinates cell proliferation. Ligand binding triggers receptor dimerization leading to the recruitment of kinases and adaptor proteins. This step simultaneously initiates multiple signal transduction pathways, which result in activation of transcription factors and other target proteins, leading to cellular alterations. It is known that mutations of EGF-R or in the components of these pathways, such as Ras and Raf, are commonly involved in human cancer. The four best characterized signaling pathways induced by EGF-R are the mitogen-activated protein kinase cascades (MAPKs), the lipid kinase phosphatidylinositol 3 kinase (PI3K), a group of transcription factors called Signal Transducers and Activator of Transcription (STAT), and the phospholipase Cγ; (PLCγ) pathways. The activation of each cascade culminates in kinase translocation to the nucleus to stimulate various transcription factors including activator protein 1 (AP-1). AP-1 family proteins are basic leucine zipper (bZIP) transcription factors that are implicated in the regulation of a variety of cellular processes (proliferation and survival, growth, differentiation, apoptosis, cell migration, transformation). Therefore, the regulation of AP-1 activity is critical for the decision of cell fate and their deregulated expression is widely associated with many types of cancers, such as breast and prostate cancers. The aims of this study were to characterize the roles of EGF-R signaling during normal development and malignant growth in vitro and in vivo using different cell lines and tissue samples. We show here that EGF-R regulates cell proliferation but is also required for regulation of AP-1 target gene expression in fibroblasts in a MAP-kinase mediated manner. Furthermore, EGF-R signaling is essential for enterocyte proliferation and migration during intestinal maturation. EGF-R signaling network, especially PI3-K-Akt pathway mediated AP-1 activity is involved in cellular survival in response to ionizing radiation. Taken together, these results elucidate the connection of EGF-R and AP-1 in various cellular contexts and show their importance in the regulation of cellular behaviour presenting new treatment cues for intestinal perforations and cancer therapy.
Resumo:
Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.
Resumo:
Neurodegenerative disorders are chronic, progressive, and often fatal disorders of the nervous system caused by dysfunction, and ultimately, death of neuronal cells. The underlying mechanisms of neurodegeneration are poorly understood, and monogenic disorders can be utilised as disease models to elucidate the pathogenesis. Juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease) is a recessively inherited lysosomal storage disorder with progressive neurodegeneration and accumulation of autofluorescent storage material in most tissues. It is caused by mutations in the CLN3 gene; however, the exact function of the corresponding CLN3 protein, as well as the molecular mechanisms of JNCL pathogenesis have remained elusive. JNCL disease exclusively affects the central nervous system leaving other organs unaffected, and therefore it is of a particular importance to conduct studies in brain tissue and neuronal cells. The aim of this thesis project was to elucidate the molecular and cell biological mechanisms underlying JNCL. This was the first study to describe the endogenous Cln3 protein, and it was shown that Cln3 localised to neuronal cells in the mouse brain. At a subcellular level, endogenous Cln3 was localised to the presynaptic terminals and to the synaptosome compartment, but not to the synaptic vesicles. Studies with the CLN3-deficient cells demonstrated an impaired endocytic membrane trafficking, and established an interconnection between CLN3, microtubulus-binding Hook1 and Rab proteins. This novel data was not only important in characterising the roles of CLN3 in cells, but also provided significant information delineating the versatile role of the Rab proteins. To identify affected cellular pathways in JNCL, global gene expression profiling of the knock-out mouse Cln3-/- neurons was performed and systematically analysed; this revealed a slight dysfunction of the mitochondria, cytoskeletal abnormality in the microtubule plus-end, and an impaired recovery from depolarizing stimulus when specific N-type Ca2+ channels were inhibited, thus leading to a prolonged time of higher intracellular calcium. All these defective pathways are interrelated, and may together be sufficient to initiate the neurodegenerative process. Results of this thesis also suggest that in neuronal cells, CLN3 most likely functions at endocytic vesicles at the presynaptic terminal, potentially involved in the regulation of the calcium-mediated synaptic transmission.
Resumo:
Vascular intimal hyperplasia is a major complication following angioplasty. The hallmark feature of this disorder is accumulation of dedifferentiated smooth muscle cells (SMCs) to the luminal side of the injured artery, cellular proliferation, migration, and synthesis of extracellular matrix. This finally results in intimal hyperplasia, which is currently considered an untreatable condition. According to current knowledge, a major part of neointimal cells derive from circulating precursor cells. This has outdated the traditional in vitro cell culture methods of studying neointimal cell migration and proliferation using cultured medial SMCs. Somatostatin and some of its analogs with different selectivity for the five somatostatin receptors (sst1 through sst5) have been shown to have vasculoprotective properties in animal studies. However, clinical trials using analogs selective for sst2/sst3/sst5 to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) have failed to show any major benefits. Sirolimus is a cell cycle inhibitor that has been suggested to act synergistically with the protein-tyrosine kinase inhibitor imatinib to inhibit intimal hyperplasia in rat already at well-tolerated submaximal oral doses. The mechanisms behind this synergy and its long-term efficacy are not known. The aim of this study was to set up an ex vivo vascular explant culture model to measure neointimal cell activity without excluding the participation of circulating progenitor cells. Furthermore, two novel potential vasculoprotective treatment strategies were evaluated in detail in rat models of intimal hyperplasia and in the ex vivo explant model: sst1/sst4-selective somatostatin receptor analogs and combination treatment with sirolimus and imatinib. This study shows how whole vessel explants can be used to study the kinetics of neointimal cells and their progenitors, and to evaluate the anti-migratory and anti-proliferative properties of potential vasculoprotective compounds. It also shows how the influx of neointimal progenitor cells occurs already during the first days after vascular injury, how the contribution of cell migration is more important in the injury response than cell proliferation, and how the adventitia actively contribute in vascular repair. The vasculoprotective effect of somatostatin is mediated preferentially through sst4, and through inhibition of cell migration rather than of proliferation, which may explain why sst2/sst3/sst5-selective analogs have failed in clinical trials. Furthermore, a brief early oral treatment with the combination of sirolimus and imatinib at submaximal doses results in long-term synergistic suppression of intimal hyperplasia. The synergy is a result of inhibition of post-operative thrombocytosis and leukocytosis, inhibition of neointimal cell migration to the injury-site, and maintenance of cell integrity by inhibition of apoptosis and SMC dedifferentiation. In conclusion, the influx of progenitor cells already during the first days after injury and the high neointimal cell migratory activity underlines the importance of early therapeutic intervention with anti-migratory compounds to prevent neointimal hyperplasia. Sst4-selective analogs and the combination therapy with sirolimus and imatinib represent potential targets for the development of such vasculoprotective therapies.