16 resultados para cell-to-cell transfer

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terminal oxidases are the final proteins of the respiratory chain in eukaryotes and some bacteria. They catalyze most of the biological oxygen consumption on Earth done by aerobic organisms. During the catalytic reaction terminal oxidases reduce dioxygen to water and use the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-driven proton pump. This membrane gradient of protons is extremely important for cells as it is used for many cellular processes, such as transportation of substrates and ATP synthesis. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. In this work we have applied a complex approach using a variety of different techniques to address the properties and the mechanism of proton translocation by the terminal oxidases. The combination of direct measurements of pH changes during catalytic turnover, time-resolved potentiometric electrometry and optical spectroscopy, made it possible to obtain valuable information about various aspects of oxidase functioning. We compared oxygen binding properties of terminal oxidases from the distinct heme-copper (CcO) and cytochrome bd families and found that cytochrome bd has a high affinity for oxygen, which is 3 orders of magnitude higher than that of CcO. Interestingly, the difference between CcO and cytochrome bd is not only in higher affinity of the latter to oxygen, but also in the way that each of these enzymes traps oxygen during catalysis. CcO traps oxygen kinetically - the molecule of bound dioxygen is rapidly reduced before it can dissociate. Alternatively, cytochrome bd employs an alternative mechanism of oxygen trapping - part of the redox energy is invested into tight oxygen binding, and the price paid for this is the lack of proton pumping. A single cycle of oxygen reduction to water is characterized by translocation of four protons across the membrane. Our results make it possible to assign the pumping steps to discrete transitions of the catalytic cycle and indicate that during in vivo turnover of the oxidase these four protons are transferred, one at a time, during the P→F, F→OH, Oh→Eh, and Eh→R transitions. At the same time, each individual proton translocation step in the catalytic cycle is not just a single reaction catalyzed by CcO, but rather a complicated sequence of interdependent electron and proton transfers. We assume that each single proton translocation cycle of CcO is assured by internal proton transfer from the conserved Glu-278 to an as yet unidentified pump site above the hemes. Delivery of a proton to the pump site serves as a driving reaction that forces the proton translocation cycle to continue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study of Scandinavian multinational corporate subsidiaries in the rapidly growing Eastern European market, due to their particular organizational structure, attempts to gain some new insights into processes and potential benefits of knowledge and technology transfer. This study explores how to succeed in knowledge transfer and to become more competitive, driven by the need to improve transfer of systematic knowledge for the manufacture of product and service provisions in newly entered market. The scope of current research is exactly limited to multinational corporations, which are defined as enterprises comprising entities in two or more countries, regardless of legal forms and field of activity of those entities, and which operate under a system of decision-making permitting coherent policies and a common strategy through one or more decision-making centers. The entities are linked, by ownership, and able to exercise influence over the activities of the others; and, in particular, to share the knowledge, resources, and responsibilities with others. The research question is "How and to which extent can knowledge-transfer influence a company's technological competence and economic competitiveness?" and try to find out what particular forces and factors affect the development of subsidiary competencies; what factors influence the corporate integration and use of the subsidiary's competencies; and what may increase competitiveness of MNC pursuing leading position in entered market. The empirical part of the research was based on qualitative analyses of twenty interviews conducted among employees in Scandinavian MNC subsidiary units situated in Ukraine, using structured sequence of questions with open-ended answers. The data was investigated by comparison case analyses to literature framework. Findings indicate that a technological competence developed in one subsidiary will lead to an integration of that competence with other corporate units within the MNC. Success increasingly depends upon people's learning. The local economic area is crucial for understanding competition and industrial performance, as there seems to be a clear link between the performance of subsidiaries and the conditions prevailing in their environment. The linkage between competitive advantage and company's success is mutually dependent. Observation suggests that companies can be characterized as clusters of complementary activities such as R&D, administration, marketing, manufacturing and distribution. Study identifies barriers and obstacles in technology and knowledge transfer that is relevant for the subsidiaries' competence development. The accumulated experience can be implemented in new entered market with simple procedures, and at a low cost under specific circumstances, by cloning. The main goal is focused to support company prosperity, making more profits and sustaining an increased market share by improved product quality and/or reduced production cost of the subsidiaries through cloning approach. Keywords: multinational corporation; technology transfer; knowledge transfer; subsidiary competence; barriers and obstacles; competitive advantage; Eastern European market

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study deals with algal species occurring commonly in the Baltic Sea: haptophyte Prymnesium parvum, dinoflagellates Dinophysis acuminata, D. norvegica and D. rotundata, and cyanobacterium Nodularia spumigena. The hypotheses are connected to the toxicity of the species, to the factors determining toxicity, to the consequences of toxicity and to the transfer of toxins in the aquatic food web. Since the Baltic Sea is severely eutrophicated, the fast-growing haptophytes have potential in causing toxic blooms. In our studies, the toxicity (as haemolytic activity) of the haptophyte P. parvum was highest under phosphorus-limited conditions, but the cells were toxic also under nitrogen limitation and under nutrient-balanced growth conditions. The cellular nutrient ratios were tightly related to the toxicity. The stoichiometric flexibility for cellular phosphorus quota was higher than for nitrogen, and nitrogen limitation led to decreased biomass. Negative allelopathic effects on another algae (Rhodomonas salina) could be observed already at low P. parvum cell densities, whereas immediate lysis of R. salina cells occurred at P. parvum cell densities corresponding to natural blooms. Release of dissolved organic carbon from the R. salina cells was measured within 30 minutes, and an increase in bacterial number and biomass was measured within 23 h. Because of the allelopathic effect, formation of a P. parvum bloom may accelerate after a critical cell density is reached and the competing species are eliminated. A P. parvum bloom indirectly stimulates bacterial growth, and alters the functioning of the planktonic food web by increasing the carbon transfer through the microbial loop. Our results were the first reports on DSP toxins in Dinophysis cells in the Gulf of Finland and on PTX-2 in the Baltic Sea. Cellular toxin contents in Dinophysis spp. ranged from 0.2 to 149 pg DTX-1 cell-1 and from 1.6 to 19.9 pg PTX-2 cell-1 in the Gulf of Finland. D. norvegica was found mainly around the thermocline (max. 200 cells L-1), whereas D. acuminata was found in the whole mixed layer (max. 7 280 cells L-1). Toxins in the sediment trap corresponded to 1 % of DTX-1 and 0.01 % PTX-2 of the DSP pool in the suspended matter. This indicates that the majority of the DSP toxins does not enter the benthic community, but is either decomposed in the water column, or transferred to higher trophic levels in the planktonic food chain. We found that nodularin, produced by Nodularia spumigena, was transferred to the copepod Eurytemora affinis through three pathways: by grazing on filaments of small Nodularia, directly from the dissolved pool, and through the microbial food web by copepods grazing on ciliates, dinoflagellates and heterotrophic nanoflagellates. The estimated proportion of the microbial food web in nodularin transfer was 22-45 % and 71-76 % in our two experiments, respectively. This highlights the potential role of the microbial food web in the transfer of toxins in the planktonic food web.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adenoviral gene therapy is an experimental approach to cancer refractory to standard cancer therapies. Adenoviruses can be utilized as vectors to deliver therapeutic transgenes into cancer cells, while gene therapy with oncolytic adenoviruses exploits the lytic potential of viruses to kill tumor cells. Although adenoviruses demonstrate several advantages over other vectors - such as the unparalleled transduction efficacy and natural tropism to a wide range of tissues - the gene transfer efficacy to cancer cells has been limited, consequently restricting the therapeutic effect. There are, however, several approaches to circumvent this problem. We utilized different modified adenoviruses to obtain information on adenovirus tropism towards non-small cell lung cancer (NSCLC) cells. To enhance therapeutic outcome, oncolytic adenoviruses were evaluated. Further, to enhance gene delivery to tumors, we used mesenchymal stem cells (MSCs) as carriers. To improve adenovirus specificity, we investigated whether widely used cyclooxygenase 2 (Cox-2) promoter is induced by adenovirus infection in nontarget cells and whether selectivity can be retained by the 3 untranslated region (UTR) AU-rich elements. In addition, we investigated whether switching adenovirus fiber can retain gene delivery in the presence of neutralizing antibodies. Our results show that adenoviruses, whose capsids were modified with arginine-glycine-aspartatic acid (RGD-4C), the serotype 3 knob, or polylysins displayed enhanced gene transfer into NSCLC cell lines and fresh clinical specimens from patients. The therapeutic efficacy was further improved by using respective oncolytic adenoviruses with isogenic 24bp deletion in the E1A gene. Cox-2 promoter was also shown to be induced in normal and tumor cells following adenovirus infection, but utilization of 3 UTR elements can increase the tumor specificity of the promoter. Further, the results suggested that use of MSCs could enhance the bioavailability and delivery of adenoviruses into human tumors, although cells had no tumor tropism per se. Finally, we demonstrated that changing adenovirus fiber can allow virus to escape from existing neutralizing antibodies when delivered systemically. In conclusion, these results reveal that adenovirus gene transfer and specificity can be increased by using modified adenoviruses and MSCs as carriers, and fiber modifications simultaneously decrease the effect of neutralizing antibodies. This promising data suggest that these approaches could translate into clinical testing in patients with NSCLC refractory to current modalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For optimal treatment planning, a thorough assessment of the metastatic status of mucosal squamous cell carcinoma of the head and neck (HNSCC) is required. Current imaging methods do not allow the recognition of all patients with metastatic disease. Therefore, elective treatment of the cervical lymph nodes is usually given to patients in whom the risk of subclinical metastasis is estimated to exceed 15-20%. The objective of this study was to improve the pre-treatment evaluation of patients diagnosed with HNSCC. Particularly, we aimed at improving the identification of patients who will benefit from elective neck treatment. Computed tomography (CT) of the chest and abdomen was performed prospectively for 100 patients diagnosed with HNSCC. The findings were analysed to clarify the indications for this examination in this patient group. CT of the chest influenced the treatment approach in 3% of patients, while CT of the abdomen did not reveal any significant findings. Our results suggest that CT of the chest and abdomen is not indicated routinely for patients with newly diagnosed HNSCC but can be considered in selected cases. Retrospective analysis of 80 patients treated for early stage squamous cell carcinoma of the oral tongue was performed to investigate the potential benefits of elective neck treatment and to examine whether histopathological features of the primary tumour could be used in the prediction of occult metastases, local recurrence, or/and poor survival. Patients who had received elective neck treatment had significantly fewer cervical recurrences during the follow-up when compared to those who only had close observation of the cervical lymph nodes. Elective neck treatment did not result in survival benefit, however. Of the histopathological parameters examined, depth of infiltration and pT-category (representing tumour diameter) predicted occult cervical metastasis, but only the pT-category predicted local recurrence. Depth of infiltration can be used in the identification of at risk patients but no clear cut-off value separating high-risk and low-risk patients was found. None of the histopathological parameters examined predicted survival. Sentinel lymph node (SLN) biopsy was studied as a means of diagnosing patients with subclinical cervical metastases. SLN biopsy was applied to 46 patients who underwent elective neck dissection for oral squamous cell carcinoma. In addition, SLN biopsy was applied to 13 patients with small oral cavity tumours who were not intended to undergo elective neck dissection because of low risk of occult metastasis. The sensitivity of SLN biopsy for finding subclinical cervical metastases was found to be 67%, when SLN status was compared to the metastatic status of the rest of the neck dissection specimen. Of the patients not planned to have elective neck dissection, SLN biopsy revealed cervical metastasis in 15% of the patients. Our results suggest that SLN biopsy can not yet entirely replace elective neck dissection in the treatment of oral cancer, but it seems beneficial for patients with low risk of metastasis who are not intended for elective neck treatment according to current treatment protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work was to elucidate the ontogeny of interleukin-10 (IL-10) secretion from newborn mononuclear cells (MCs), and to examine its relation to the secretion of interferon-g (IFN-g) and immunoglobulins (Igs). The initial hypothesis was that the decreased immunoglobulin (Ig) synthesis of newborn babies was the result of immature cytokine synthesis regulation, which would lead to excessive IL-10 production, leading in turn to suppressed IFN-g secretion. Altogether 57 full-term newborns and 34 adult volunteers were enrolled. Additionally, surface marker compositions of 29 premature babies were included. Enzyme-linked immunoassays were used to determine the amount of secreted IL-10, IFN-g, and Igs, and the surface marker composition of MC were analyzed with a FACScan flow cytometer. The three most important findings were: 1. Cord blood MC, including CD5+ B cells, are able to secrete IL-10. However, when compared with adults, the secretion of IL-10 was decreased. This indicates that reasons other than excessive IL-10 secretion are responsible of reduced IFN-g secretion in newborns. 2. As illustrated by the IL-10 and IFN-g secretion pattern, newborn cytokine profile was skewed towards the Th2 type. However, approximately 25% of newborns had an adult like cytokine profile with both good IL10 and IFN-g secretion, demonstrating that fullterm newborns are not an immunologically homogenous group at the time of birth. 3. There were significant differences in the surface marker composition of MCs between individual neonates. While gestational age correlated with the proportion of some MC types, it is evident that there are many other maternal and fetal factors that influence the maturity and nature of lymphocyte subpopulations in individual neonates. In conclusion, the reduced ability of neonates to secrete Ig and IFN-g is not a consequence of high IL-10 secretion. However, individual newborns differ significantly in their ability to secrete cytokines as well as Igs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cord blood is a well-established alternative to bone marrow and peripheral blood stem cell transplantation. To this day, over 400 000 unrelated donor cord blood units have been stored in cord blood banks worldwide. To enable successful cord blood transplantation, recent efforts have been focused on finding ways to increase the hematopoietic progenitor cell content of cord blood units. In this study, factors that may improve the selection and quality of cord blood collections for banking were identified. In 167 consecutive cord blood units collected from healthy full-term neonates and processed at a national cord blood bank, mean platelet volume (MPV) correlated with the numbers of cord blood unit hematopoietic progenitors (CD34+ cells and colony-forming units); this is a novel finding. Mean platelet volume can be thought to represent general hematopoietic activity, as newly formed platelets have been reported to be large. Stress during delivery is hypothesized to lead to the mobilization of hematopoietic progenitor cells through cytokine stimulation. Accordingly, low-normal umbilical arterial pH, thought to be associated with perinatal stress, correlated with high cord blood unit CD34+ cell and colony-forming unit numbers. The associations were closer in vaginal deliveries than in Cesarean sections. Vaginal delivery entails specific physiological changes, which may also affect the hematopoietic system. Thus, different factors may predict cord blood hematopoietic progenitor cell numbers in the two modes of delivery. Theoretical models were created to enable the use of platelet characteristics (mean platelet volume) and perinatal factors (umbilical arterial pH and placental weight) in the selection of cord blood collections with high hematopoietic progenitor cell counts. These observations could thus be implemented as a part of the evaluation of cord blood collections for banking. The quality of cord blood units has been the focus of several recent studies. However, hemostasis activation during cord blood collection is scarcely evaluated in cord blood banks. In this study, hemostasis activation was assessed with prothrombin activation fragment 1+2 (F1+2), a direct indicator of thrombin generation, and platelet factor 4 (PF4), indicating platelet activation. Altogether three sample series were collected during the set-up of the cord blood bank as well as after changes in personnel and collection equipment. The activation decreased from the first to the subsequent series, which were collected with the bank fully in operation and following international standards, and was at a level similar to that previously reported for healthy neonates. As hemostasis activation may have unwanted effects on cord blood cell contents, it should be minimized. The assessment of hemostasis activation could be implemented as a part of process control in cord blood banks. Culture assays provide information about the hematopoietic potential of the cord blood unit. In processed cord blood units prior to freezing, megakaryocytic colony growth was evaluated in semisolid cultures with a novel scoring system. Three investigators analyzed the colony assays, and the scores were highly concordant. With such scoring systems, the growth potential of various cord blood cell lineages can be assessed. In addition, erythroid cells were observed in liquid cultures of cryostored and thawed, unseparated cord blood units without exogenous erythropoietin. This was hypothesized to be due to the erythropoietic effect of thrombopoietin, endogenous erythropoietin production, and diverse cell-cell interactions in the culture. This observation underscores the complex interactions of cytokines and supporting cells in the heterogeneous cell population of the thawed cord blood unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Merkel cell carcinoma (MCC) is a rare cutaneous malignancy that occurs predominantly on sun exposed skin areas. A new polyomavirus (MCPyV) was identified in MCC tumor tissues in 2008 suggesting that a viral infection might be an etiological factor. A typical MCC is a rapidly growing painless purple nodule. In its early stage it can be misjudged by its appearance as a cyst or abscess. Recurrences are common and approximately half of the patients will develop lymph node metastases and third of the patents will have distant metastases. It affects mostly elderly persons at an average age of 70 at the time of diagnosis. MCC was first described in 1972 and the first MCC patient in Finland was identified in 1983. MCC has been poorly recognized, but increased awareness and better diagnostic accuracy has increased the incidence since the early years. In this study, all cases with a notation of MCC during 1979 2008 were obtained from the Finnish Cancer Registry. Based on this data, the incidence is 0.11 for men and 0.12 for women. It is similar than that of other Nordic countries, but lower than in the USA. For clinical series, the files of patients diagnosed with MCC during 1983 2004 were reviewed, and the tissue samples were re-evaluated, if available (n=181). Third of the patients were men, and the most common site of the primary tumor was the head and neck (53%). The majority of the patients (86%) presented with a clinically node-negative (Stage I or II) disease, but the disease recurred in 38% of them. The treatment schemes were heterogeneous. No additional benefit from a wide margin (≥2 cm) was found compared to a margin of 0.1-1.9 cm, but intralesional excision was more often associated with local recurrence. None of the patients with Stage I-II disease who had received postoperative radiotherapy had local recurrence during the follow-up period. The 5-year relative survival ratio for Stage I disease was 68%, for Stage II 67%, for Stage III 16%, and for Stage IV 0%. The relative excess risk of death was significantly lower among women than among men. Some of these tissue samples were further analyzed for vascular invasion (n=126) by immunohistochemistry using vascular endothelial markers CD-31 and D2-40. Vascular invasion was seen in 93% of the samples and it was observed already in very small, <5mm tumors. The tissue samples were also analyzed for the presence of MCPyV by using a polymerase chain reaction (PCR) and quantitative PCR. MCPyV DNA was present in 80% of 114 samples studied. The patients with virus-positive tumors had better overall survival than patients with virus-negative tumors. Immunohistochemical analyses were performed for the expression of VEGFR-2 (n=21) and endostatin (n=19), but they had no prognostic value. Our results support the concept of treating MCC with margin-negative excision and radiotherapy to the tumor bed to reduce local recurrence. The finding of a high frequency of lymphovascular invasion reduces its value as a prognostic factor, but emphasizes the role of sentinel node biopsy even in very small primary MCC.