3 resultados para cd59
em Helda - Digital Repository of University of Helsinki
Resumo:
Intracranial artery aneurysms (IAs) are estimated to be present in 2.3% of the population. A rupture of an IA causes subarachnoid hemorrhage, with up to 50% mortality. The annual low rupture risk of an IA indicates that most IAs never rupture. The current treatment options are invasive and somewhat risky. Thus rupture-prone IAs should be identified and this requires a better understanding of the IA wall pathobiology. Inflammatory cell infiltrations have been found to precede IA rupture, indicating the role of inflammation in IA wall degeneration and rupture. The complement system is a key mediator of inflammation and house-hold processing of injured tissue. This study aimed at identifying the role of complement activation in IA wall degeneration and the complement activators involved and determining how the complement system is regulated in the IA wall. In immunostainings, the end-product of complement activation, the terminal complement complex (TCC), was located mainly in the outer part of the IA wall, in areas that had also sustained loss of cells. In electron microscopy, the area of maximum TCC accumulation contained cellular debris and evidence of both apoptotic and necrotic cell death. Complement activation correlated with IA wall degeneration and rupture, de-endothelialization, and T-cell and CD163-positive macrophage infiltration. The complement system was found to become activated in all IAs by the classical pathway, with recruitment of alternative pathway amplification. Of the potential activators immunoglobulins G and M and oxidatively modified lipids were found in large areas. Lipid accumulation was observed to clearly colocalize with TCC and C-reactive protein. In the luminal parts of the IA wall, complement activation was limited by cellular expression of protectin (CD59) and extracellular matrix-bound inhibitors, C4b binding protein and factor H whereas the outer part of the wall lacked cells expressing protectin as well as matrix-bound factor H. In single nucleotide polymorphism-analysis, age-related macular degeneration-associated factor H Y402H polymorphism did not associate with the presence of IAs or their rupture The data suggest that complement activation and TCC formation are involved in IA wall degeneration and rupture. Complement seems to become activated by more than one specific activator. The association of complement with de-endothelialization and expression of several complement activators indicate a possible role of endothelial dysfunction and/or impaired clearance mechanisms. Impaired complement regulation seems to be associated with increased complement activation in IA walls. These results stress the role of chronic inflammation in IA wall pathobiology and the regulatory role of complement within this process. Imaging inflammation would possibly enhance the diagnostics of rupture-prone IAs, and targeting IA treatment to prevent chronic inflammation might improve IA treatment in the future.
Resumo:
Rituximab, a monoclonal antibody against B-cell specific CD20 antigen, is used for the treatment of non-Hodgkin lymphomas (NHL) and chronic lymphatic leukemia. In combination with chemotherapeutics rituximab has remarkably improved the outcome of NHL patients, but a vast variation in the lengths of remissions remains and the outcome of individual patients is difficult to predict. This thesis has searched for an explanation for this by studying the effector mechanisms of rituximab and by comparing gene expression in lymphoma tissue samples of patients with long- and short-term survival. This work demonstrated that activation of complement (C) system is in vitro more efficient effector mechanism of rituximab than cellular mechanisms or apoptosis. Activation of the C system was also shown in vivo during rituximab treatment. However, intravenously administered rituximab could not enter the cerebrospinal fluid, and neither C activation nor removal of lymphoma cells was observed in central nervous system. In vitro cytotoxicity assays showed that rituximab-induced cell killing could be markedly improved with simultaneous neutralization of the C regulatory proteins CD46 (Membrane cofactor protein), CD55 (Decay-accelerating factor), and CD59 (protectin). In a retrospective study of follicular lymphoma (FL) patients, low lymphoma tissue mRNA expressions of CD59 and CD55 were associated with a good prognosis and in a progressive flow cytometry study high expression of CD20 relative to CD55 was correlated to a longer progression free survival. Gene expression profile analysis revealed that expression of certain often cell cycle, signal transduction or immune response related genes correlate with clinical outcome of FL patients. Emphasizing the role of tumor microenvironment the best differentiating genes Smad1 and EphA1 were demonstrated to be mainly expressed in the non-malignant cells of tumors. In conclusion, this thesis shows that activation of the C system is a clinically important effector mechanism of rituximab and that microenvironment factor in tumors and expression of C regulatory proteins affect markedly the efficacy of immunochemotherapy. This data can be used to identify more accurately the patients for whom immunochemotherapy is given. It may also be beneficial in development of rituximab-containing and other monoclonal antibody therapies against cancer.
Resumo:
Acute pancreatitis (AP), a common cause of acute abdominal pain, is usually a mild, self-limited disease. However, some 20-30% of patients develop a severe disease manifested by pancreatic necrosis, abscesses or pseudocysts, and/or extrapancreatic complications, such as vital organ failure (OF). Patients with AP develop systemic inflammation, which is considered to play a role in the pathogenesis of multiple organ failure (MOF). OF mimics the condition seen in patients with sepsis, which is characterized by an overwhelming production of inflammatory mediators, activation of the complement system and systemic activation of coagulation, as well as the development of disseminated intravascular coagulation (DIC) syndrome. Vital OF is the major cause of mortality in AP, along with infectious complications. About half of the deaths occur within the first week of hospitalization and thus, early identification of patients likely to develop OF is important. The aim of the present study was to investigate inflammatory and coagulation disturbances in AP and to find inflammatory and coagulation markers for predicting severe AP, and development of OF and fatal outcome. This clinical study consists of four parts. All of patients studied had AP when admitted to Helsinki University Central Hospital. In the first study, 31 patients with severe AP were investigated. Their plasma levels of protein C (PC) and activated protein C (APC), and monocyte HLA-DR expression were studied during the treatment period in the intensive care unit; 13 of these patients developed OF. In the second study, the serum levels of complement regulator protein CD59 were studied in 39 patients during the first week of hospitalization; 12 of them developed OF. In the third study, 165 patients were investigated; their plasma levels of soluble form of the receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) protein were studied during the first 12 days of hos-pitalization; 38 developed OF. In the fourth study, 33 patients were studied on admission to hospital for plasma levels of prothrombin fragment F1+2 and tissue factor pathway inhibitor (TFPI), and thrombin formation capacity by calibrated automated thrombogram (CAT); 9 of them developed OF. Our results showed significant PC deficiency and decreased APC generation in patients with severe AP. The PC pathway defects seemed to be associated with the development of OF. In patients who developed OF, the levels of serum CD59 and plasma sRAGE, but not of HMGB1, were significantly higher than in patients who recovered without OF. The high CD59 levels on admission to the hospital seemed to be predictive for severe AP and OF. The median of the highest sRAGE levels was significantly higher in non-survivors than in survivors. No significant difference between the patient groups was found in the F1+2 levels. The thrombograms of all patients were disturbed in their shape, and in 11 patients the exogenous tissue factor did not trigger thrombin generation at all ( flat curve ). All of the patients that died displayed a flat curve. Free TFPI levels and free/total TFPI ratios were significantly higher in patients with a flat curve than in the others, and these levels were also significantly higher in non-survivors than in survivors. The flat curve in combination with free TFPI seemed to be predictive for a fatal outcome in AP.