1 resultado para catchment management

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Finland one of the most important current issues in the environmental management is the quality of surface waters. The increasing social importance of lakes and water systems has generated wide-ranging interest in lake restoration and management, concerning especially lakes suffering from eutrophication, but also from other environmental impacts. Most of the factors deteriorating the water quality in Finnish lakes are connected to human activities. Especially since the 1940's, the intensified farming practices and conduction of sewage waters from scattered settlements, cottages and industry have affected the lakes, which simultaneously have developed in to recreational areas for a growing number of people. Therefore, this study was focused on small lakes, which are human impacted, located close to settlement areas and have a significant value for local population. The aim of this thesis was to obtain information from lake sediment records for on-going lake restoration activities and to prove that a well planned, properly focused lake sediment study is an essential part of the work related to evaluation, target consideration and restoration of Finnish lakes. Altogether 11 lakes were studied. The study of Lake Kaljasjärvi was related to the gradual eutrophication of the lake. In lakes Ormajärvi, Suolijärvi, Lehee, Pyhäjärvi and Iso-Roine the main focus was on sediment mapping, as well as on the long term changes of the sedimentation, which were compared to Lake Pääjärvi. In Lake Hormajärvi the role of different kind of sedimentation environments in the eutrophication development of the lake's two basins were compared. Lake Orijärvi has not been eutrophied, but the ore exploitation and related acid main drainage from the catchment area have influenced the lake drastically and the changes caused by metal load were investigated. The twin lakes Etujärvi and Takajärvi are slightly eutrophied, but also suffer problems associated with the erosion of the substantial peat accumulations covering the fringe areas of the lakes. These peat accumulations are related to Holocene water level changes, which were investigated. The methods used were chosen case-specifically for each lake. In general, acoustic soundings of the lakes, detailed description of the nature of the sediment and determinations of the physical properties of the sediment, such as water content, loss on ignition and magnetic susceptibility were used, as was grain size analysis. A wide set of chemical analyses was also used. Diatom and chrysophycean cyst analyses were applied, and the diatom inferred total phosphorus content was reconstructed. The results of these studies prove, that the ideal lake sediment study, as a part of a lake management project, should be two-phased. In the first phase, thoroughgoing mapping of sedimentation patterns should be carried out by soundings and adequate corings. The actual sampling, based on the preliminary results, must include at least one long core from the main sedimentation basin for the determining the natural background state of the lake. The recent, artificially impacted development of the lake can then be determined by short-core and surface sediment studies. The sampling must be focused on the basis of the sediment mapping again, and it should represent all different sedimentation environments and bottom dynamic zones, considering the inlets and outlets, as well as the effects of possible point loaders of the lake. In practice, the budget of the lake management projects of is usually limited and only the most essential work and analyses can be carried out. The set of chemical and biological analyses and dating methods must therefore been thoroughly considered and adapted to the specific management problem. The results show also, that information obtained from a properly performed sediment study enhances the planning of the restoration, makes possible to define the target of the remediation activities and improves the cost-efficiency of the project.