24 resultados para candidate gene

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies. This thesis investigates variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD. This candidate gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene is a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function. First, we examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts. Our data suggested that USF1 contributes to these CVD risk factors at the population level. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual. Second, we investigated how variation at the USF1 locus contributes to atherosclerotic lesions of the coronary arteries and abdominal aorta. For this, we used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. USF1 variation significantly associated with areas of several types of lesions, especially with calcification of the arteries. Next, we tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD. The atherosclerosis-associated risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in the Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies. Finally, as some of the low-yield DNA samples of the Finnish follow-up study cohort needed to be whole-genome amplified (WGA) prior to genotyping, we evaluated whether the produced WGA genotypes were of good quality. Although the samples giving genotype discrepancies could not be detected before genotyping with standard laboratory quality control methods, our results suggested that enhanced quality control at the time of the genotyping could identify such samples. In addition, combining two WGA reactions into one pooled DNA sample for genotyping markedly reduced the number of discrepancies and samples showing them. In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. This USF1 study, and other studies with low DNA yield of some samples, can benefit from whole genome amplification of the low-yield samples prior to genotyping. Careful quality control procedures are, however, needed in WGA genotyping.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acute pancreatitis (AP) is a common disease. Mild disease resolves spontaneously in a few days. Severe forms of the disease can lead to local complications, necrosis, and abscesses in and around the pancreas. Systemic inflammation in severe AP is associated with distant organ failures. The aim of this study is to identify genetically determined prognostic factors involved in the clinical features of AP. The study employs a candidate-gene approach, and the genes are involved in trysinogen activation in the initiation phase of the disease, as well as in the systemic inflammation as the disease proceeds. The last study examines adipokines, fat-derived hormones characterized with the capacity to modify inflammation. SPINK 1 is a gene coding trypsin activation inhibitor. Mutations N34S and P55N were determined by minisequencing methods in 371 AP patients and in 459 controls. The mutation N34S was more common in AP patients (7.8%) than in controls (2.6%). This suggests that SPINK 1 gene mutation N34S is a risk factor for AP. In the fourth study, in 12 matched pairs of patients with severe and mild AP, levels of adipokines, adiponectin, and leptin were evaluated. Plasma adipokine levels did not differ between patients with mild and severe AP. The results suggest that in AP, adipokine plasma levels are not factors predisposing to organ failures. This study identified the SPINK 1 mutation N34S to be a risk factor for AP in the general population. As AP is a multifactorial disease, and extensive genetic heterogeneity is likely, further identification of genetic factors in the disease requires larger future studies with more advanced genetic study models. Further identification of the patient characteristics associated with organ failures offers another direction of the study to achieve more detailed understanding of the severe form of AP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neuronal ceroid lipofuscinoses (NCLs) are a group of mostly autosomal recessively inherited neurodegenerative disorders. The aim of this thesis was to characterize the molecular genetic bases of these, previously genetically undetermined, NCL forms. Congenital NCL is the most aggressive form of NCLs. Previously, a mutation in the cathepsin D (CTSD) gene was shown to cause congenital NCL in sheep. Based on the close resemblance of the phenotypes between congenital NCLs in sheep and human, CTSD was considered as a potential candidate gene in humans as well. When screened for mutations by sequencing, a homozygous nucleotide duplication creating a premature stop codon was identified in CTSD in one family with congenital NCL. While in vitro the overexpressed truncated mutant protein was stable although inactive, the absence of CTSD staining in brain tissue samples of patients indicated degradation of the mutant CTSD in vivo. A lack of CTSD staining was detected also in another, unrelated family with congenital NCL. These results imply that CTSD deficiency underlies congenital NCL. While initially Turkish vLINCL was considered a distinct genetic entity (CLN7), mutations in the CLN8 gene were later reported to account for the disease in a subset of Turkish patients with vLINCL. To further dissect the genetic basis of the disease, all known NCL genes were screened for homozygosity by haplotype analysis of microsatellite markers and/or sequenced in 13 mainly consanguineous, Turkish vLINCL families. Two novel, family-specific homozygous mutations were identified in the CLN6 gene. In the remaining families, all known NCL loci were excluded. To identify novel gene(s) underlying vLINCL, a genomewide single nucleotide polymorphism scan, homozygosity mapping, and positional candidate gene sequencing were performed in ten of these families. On chromosome 4q28.1-q28.2, a novel major facilitator superfamily domain containing 8 (MFSD8) gene with six family-specific homozygous mutations in vLINCL patients was identified. MFSD8 transcript was shown to be ubiquitously expressed with a complex pattern of alternative splicing. Our results suggest that MFSD8 is a novel lysosomal integral membrane protein which, as a member of the major facilitator superfamily, is predicted to function as a transporter. Identification of MFSD8 emphasizes the genetic heterogeneity of Turkish vLINCL. In families where no MFSD8 mutations were detected, additional NCL-causing genes remain to be identified. The identification of CTSD and MFSD8 increases the number of known human NCL-causing genes to eight, and is an important step towards the complete understanding of the genetic spectrum underlying NCLs. In addition, it is a starting point for dissecting the molecular mechanisms behind the associated NCLs and contributes to the challenging task of understanding the molecular pathology underlying the group of NCL disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary pulmonary hypertension (PPH), or according to the recent classification idiopathic pulmonary hypertension (IPAH), is a rare, progressive disease of pulmonary vasculature leading to pulmonary hypertension and right heart failure. Most of the patients are sporadic but in about 6% of cases the disease is familial (FPPH). In 2000 two different groups identified the gene predisposing to PPH. This gene, Bone morphogenetic protein receptor type 2 (BMPR2), encodes a subunit of transforming growth factor β (TGF-β) receptor complex. There is a genetic connection between PPH and hereditary hemorrhagic telangiectasia (HHT), a bleeding disorder characterized by local telangiectasias and sometimes with pulmonary hypertension. In HHT, mutations in ALK1 (activin like kinase type 1) and Endoglin, another members of the TGF-β signaling pathway are found. In this study we identified all of the Finnish PPH patients for the years 1986-1999 using the hospital discharge registries of Finnish university hospitals. During this period we found a total of 59 confirmed PPH patients: 55 sporadic and 4 familial representing 3 different families. In 1999 the prevalence of PPH was 5.8 per million and the annual incidence varied between 0.2-1.3 per million. Among 28 PPH patients studied, heterozygous BMPR2 mutations were found in 12% (3/26) of sporadic patients and in 33% of the PPH families (1/3). All the mutations found were different. Large deletions of BMPR2 were excluded by single-stranded chain polymomorphism analysis. As a candidate gene approach we also studied ALK1, Endoglin, Bone Morphogenetic Receptor Type IA (BMPR1A or ALK3), Mothers Against Decapentaplegic Homolog 4 (SMAD4) and Serotonine Transporter Gene (SLC6A4) using single-strand conformational polymorphism (SSCP) analysis and direct sequencing. Among patients and family members studied, we found two mutations in ALK1 in two unrelated samples. We also identified all the HHT patients treated at the Department of Otorhinolaryngology at Helsinki University Central Hospital between the years of 1990-2005 and 8 of the patients were studied for Endoglin and ALK1 mutations using direct sequencing. A total of seven mutations were found and all the mutations were different. The absence of a founder mutation in the Finnish population in both PPH and HHT was somewhat surprising. This suggests that the mutations of BMPR2, ALK1 and Endoglin are quite young and the older mutations have been lost due to repetitive genetic bottlenecks and/or negative selection. Also, other genes than BMPR2 may be involved in the pathogenesis of PPH. No founder mutations were found in PPH or HHT and thus no simple genetic test is available for diagnostics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Both environmental factors and several predisposing genes are required to generate MS. Despite intensive research these risk factors are still largely unknown, the pathogenesis of MS demyelination is poorly understood, and no curative treatment exists. Both prevalence and familial occurrence of MS are exceptionally high in a Finnish population subisolate, Southern Ostrobothnia, presumably due to enrichment of predisposing genetic variants within this region. Previous linkage scan on MS pedigrees from Southern Ostrobothnia detected three main MS loci on chromosomes 5p, 6p (HLA) and 17q. Linkage studies in other populations have also provided independent evidence for the location of MS susceptibility genes in these regions. Further, these loci are syntenic to the experimental autoimmune encephalomyelitis (EAE) susceptibility loci of rodents. In this thesis work an effort was made to localize MS predisposing alleles of the linked loci outside the HLA region by studying familial MS cases from the Southern Ostrobothnia isolate. Analysis of the 5p locus revealed one region, flanking the complement component 7 (C7) gene. The identified relatively rare haplotype seems to have a fairly large effect on genetic susceptibility of MS (frequency MS 12%, controls 4%; p=0.000003, OR=2.73). Evidence for association with alleles of the region and MS was seen also in more heterogeneous populations. Convincingly, plasma C7 protein levels and complement activity correlated with the risk haplotype identified. The finding stimulated us to study other complement cascade genes in MS. No evidence for association could be observed with the complement component coding genes outside 5p. A scan of the 17q locus provided evidence for association with variants of the protein kinase C alpha (PRKCA) gene (p=0.0001). Modest evidence for association with PRKCA was observed also in Canadian MS families. Finally we used a candidate gene based approach to identify potential MS loci. Mutations of DAP12 and TREM2 cause a recessively inherited CNS white matter disease PLOSL. Interestingly, DAP12 and TREM2 are located in MS regions on 6p and 19q, and we tested them as potential candidate genes in the Finnish MS sample. No evidence for association with MS was observed. This thesis provides an example of how extended families from special populations can be utilized in fine-mapping of the linked loci. A first relatively rare MS variant was identified utilizing the strength of a Finnish population subisolate. This variant seems to have an effect on activity of the complement system, which has previously been suggested to have an important role in the pathogenesis of MS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The von Hippel-lindau (VHL) disease is a dominantly inherited neoplastic disorder which predisposes patients to multiple tumours including capillary haemangioblastomas (CHBs), pheochromocytomas (PCCs), renal cell carcinomas (RCCs). CHBs are the most common manifestations of VHL disease, occurring sporadically or as a manifestation of VHL disease. Inactivation of the VHL gene at 3p25-26 is believed to cause both familial and sporadic VHL-associated tumours and germ-line mutation of the VHL gene have been detected in 100% of the CHBs studied. However, a limited number of sporadic CHBs, PCCs display VHL inactivation. Other molecular alterations involved in tumourigenesis of sporadic CHBs, PCCs remain largely unknown. The purpose of the present work was to search for genetic alterations, or other mechanisms of inactivation, in addition to the VHL gene, that may be important in the development of VHL-associated tumours. Though less satisfactory than cure, prevention and early detection are the most promising and feasible means reducing cancer morbidity and mortality. This work is based on the view that increasing knowledge about the molecular events underlying tumour development will eventually aid in early detection and lead to improved treatment. We evaluated a large set of VHL-associated patients, searched for a clinical and radiologic signs of the disease. We succesfully performed a germ-line mutation analysis and characterised three patient groups, VHL, suspect VHL and sporadic, a germ-line mutation analysis revealed a 50% mutation rate only in the VHL groups, no sporadic or suspect cases displayed any mutation. We also utilized comparative genomic hybridization (CGH) to screen for DNA copy number changes in both sporadic and VHL-associated CHB. Our analysis revealed (27%) DNA copy number losses. The most common finding was loss of chromosomal arm 6q, seen in (23%) cases, No differences were noted between VHL-associated and sporadic tumours. Furthermore a loss of heterozygosity (LOH) study on chromosome 3p and 6q was done with the purpose to determine allele losses not observable by CGH, and to uncover the location of putative tumour suppressor genes important in CHB and PCC tumourigenesis. We identified loss of chromosome 6q and a minimal deleted area at 6q23-24 in CHBs. We also showed LOH at 6q23-24 in PCCs and identified the ZAC1 (6q24-25) as a candidate gene, ZAC1 is a maternally imprinted tumour suppressor gene with anti proliferative properties. To study further the role of ZAC inactivation in CHBs, we investigated LOH, promoter hypermethylation and expression status of the ZAC1 gene in mainly sporadic CHBs. Our LOH analysis revealed that the majority of the tumours with allele loss. The gene promoter methylation analysis similarly detected predominance of the methylated ZAC sequence in almost all tumours. Immunohistochemistry exhibited a strongly reduced expression of ZAC in stromal cells of all CHBs studied. Our current results indicate that the absence of the unmethylated, ZAC1 promoter sequence was highly concurrent with LOH for the ZAC1 region or 6q loss. This observation together with lack of ZAC expression, points to preferential loss of the non imprinted, expressed ZAC allele in CHB, in summary, our series of studies reveal a new chromosomal region 6q, emphasizes the importance of ZAC1 gene in the development of CHB and PCC, particularly in non-VHL associated cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many of the genes predisposing to highly penetrant colorectal cancer (CRC) syndromes, including hereditary non-polyposis colorectal cancer (MLH1, MSH2, MSH6, PMS2), familial adenomatous polyposis (APC), Peutz-Jeghers syndrome (LKB1), juvenile polyposis (SMAD4, BMPR1A), MYH-associated polyposis (MYH), and Cowden syndrome (PTEN) have already been discovered. Identification of these genes has allowed a more precise classification of the hereditary CRC syndromes and provided a means for predictive genetic testing and surveillance. Some of the genes are also involved in sporadic cancer forms, and therefore the investigation of the rare CRC syndromes has been a breakthrough for general cancer research. Despite the accumulating knowledge on hereditary cancer syndromes, a significant number of familial CRCs remain molecularly unexplained after genetic testing, reflecting the possibility of other predisposing genes or existence of novel syndromes. Moreover, genetic variants conferring low-penetrance risk are still largely unknown. In this study, we examined the role of some new high- and low-penetrance alleles on CRC predisposition. We identified disease causing MYH mutations in a subset (9%) of patients with APC and AXIN2 mutation negative adenomatous polyposis. Due to differences in the pattern of inheritance and clinical manifestation, screening for mutations in MYH is beneficial in view of genetic counselling and surveillance. A novel functionally deficient MYH founder mutation A459D was identified in the Finnish population, and this finding had immediate clinical implications for genetic counselling of at risk families. Many patients with hamartomatous polyposis remain without molecular diagnosis due to atypical phenotypes. We therefore sought to classify 49 patients with unexplained hamartomatous or hyperplastic/mixed polyposis by extensive molecular analyses of PTEN, LKB1, BMPR1A, SMAD4, ENG, BRAF, MYH, and BHD along with revision of polyp histology. Mutations were identified in 11/49 (22%) of the patients. In 6 cases the molecular diagnosis was re-classified guiding surveillance and decisions for prophylactic surgery. Re-evaluation of polyp histology with subsequent more accurate selection of candidate gene analyses is beneficial and can be recommended for patients with unexplained polyposis. Furthermore, germline mutations in ENG underlying juvenile polyposis were described for the first time, characterizing a possible novel genetically defined form of hereditary CRC. Association analyses on two putative low-penetrance alleles, NOD2 3020insC and MDM2 SNP309 were performed in a population-based series of 1042 Finnish CRC patients and in cancer-free controls. In contrast to previous results, NOD2 3020insC did not associate with CRC or age at disease onset in the Finnish population. These data suggest that NOD2 3020insC alone might not be sufficient for CRC predisposition. MDM2 SNP309 was as common in the CRC cohort as in the healthy controls. Interesting trends, however, were observed, which after correction for multiple testing did not reach statistical significance. SNP309 was more common in female CRC patients and a trend towards an earlier age at disease onset was observed in women with SNP309. Subsequent studies have supported this observation and SNP309 could affect gender- or hormone-related tumorigenesis. Finally, a large-scale unbiased effort was designed to characterize the complete mutatome of CRC with microsatellite instability (MSI). Using an approach combining expression microarray and genome database searches, we were able to identify putative MSI target genes. Further characterization of one of the genes suggested that it might play a role also in microsatellite stable CRC and Peutz-Jeghers syndrome pathogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Positional cloning has enabled hypothesis-free, genome-wide scans for genetic factors contributing to disorders or traits. Traditionally linkage analysis has been used to identify regions of interest, followed by meticulous fine mapping and candidate gene screening using association methods and finally sequencing of regions of interest. More recently, genome-wide association analysis has enabled a more direct approach to identify specific genetic variants explaining a part of the variance of the phenotype of interest. Autism spectrum disorders (ASDs) are a group of childhood onset neuropsychiatric disorders with shared core symptoms but varying severity. Although a strong genetic component has been established in ASDs, genetic susceptibility factors have largely eluded characterization. Here, we have utilized modern molecular genetic methods combined with the advantages provided by the special population structure in Finland to identify genetic risk factors for ASDs. The results of this study show that numerous genetic risk factors exist for ASDs even within a population isolate. Stratification based on clinical phenotype resulted in encouraging results, as previously identified linkage to 3p14-p24 was replicated in an independent family set of families with Asperger syndrome, but no other ASDs. Fine-mapping of the previously identified linkage peak for ASDs at 3q25-q27 revealed association between autism and a subunit of the 5-hydroxytryptamine receptor 3C (HTR3C). We also used dense, genome-wide single nucleotide polymorphism (SNP) data to characterize the population structure of Finns. We observed significant population substructure which correlates with the known history of multiple consecutive bottle-necks experienced by the Finnish population. We used this information to ascertain a genetically homogenous subset of autism families to identify possible rare, enriched risk variants using genome-wide SNP data. No rare enriched genetic risk factors were identified in this dataset, although a subset of families could be genealogically linked to form two extended pedigrees. The lack of founder mutations in this isolated population suggests that the majority of genetic risk factors are rare, de novo mutations unique to individual nuclear families. The results of this study are consistent with others in the field. The underlying genetic architecture for this group of disorders appears highly heterogeneous, with common variants accounting for only a subset of genetic risk. The majority of identified risk factors have turned out to be exceedingly rare, and only explain a subset of the genetic risk in the general population in spite of their high penetrance within individual families. The results of this study, together with other results obtained in this field, indicate that family specific linkage, homozygosity mapping and resequencing efforts are needed to identify these rare genetic risk factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypokinesia, rigidity, tremor, and postural instability are the cardinal symptoms of Parkinson s disease (PD). Since these symptoms are not specific to PD the diagnosis may be uncertain in early PD. Etiology and pathogenesis of PD remain unclear. There is no neuroprotective therapy. Genetic findings are expected to reveal metabolic routes in PD pathogenesis and thereby eventually lead to therapeutic innovations. In this thesis, we first aimed to study the usefulness and accuracy of 123I-b-CIT SPECT in the diagnosis of PD in a consecutive clinic-based material including various movement disorders. We subsequently a genetic project to identify genetic risk factors for sporadic PD using a candidate gene approach in a case-control setting including 147 sporadic PD patients and 137 spouse controls. Dopamine transporter imaging by 123I-b-CIT SPECT could distinguish PD from essential tremor, drug-induced parkinsonism, dystonia and psychogenic parkinsonism. However, b-CIT uptake in Parkinson plus syndromes (PSP and multiple system atrophy) and dementia with Lewy bodies was not significantly different from PD. 123I-b-CIT SPECT could not reliably differentiate PD from vascular parkinsonism. 123I-b-CIT SPECT was 100% sensitive and specific in the diagnosis of PD in patients younger than 55 years but less specific in older patients, due to differential distribution of the above conditions in the younger and older age groups. 123I-b-CIT SPECT correlated with symptoms and detected bilateral nigrostriatal defect in patients whose PD was still in unilateral stage. Thus, in addition to as a differential diagnostic aid, 123I-b-CIT SPECT may be used to detect PD early, even pre-symptomatically in at-risk individuals. 123I-b-CIT SPECT was used to aid in the collection of patients to the genetic studies. In the genetic part of this thesis we found an association between PD and a polymorphic CAG-repeat in POLG1 gene encoding the catalytic subunit of mitochondrial polymerase gamma. The CAG-repeat encodes a polyglutamine tract (polyQ), the two most common lengths of which are 10Q (86-90%) and 11Q. In our Finnish material, the rarer non-10Q or non-11Q length variants (6Q-9Q, 12Q-14Q, 4R+9Q) were more frequent in patients than in spouse controls (10% vs. 3.5 %, p=0.003), or population controls (p=0.001). Therefore, we performed a replication study in 652 North American PD patients and 292 controls. Non-10/11Q alleles were more common in the US PD patients compared to the controls but the difference did not reach statistical significance (p=0.07). This larger data suggested our original definition of variant length allele might need reconsideration. Most previous studies on phenotypic effects of POLG1 polyQ have defined 10Q as the only normal allele. Non-10Q alleles were significantly more common in patients compared to the controls (17.3% vs. 12.3 %, p= 0.005). This association between non-10Q length variants and PD remained significant when compared to a larger set of 1541 literature controls (p=0.00005). In conclusion, POLG1 polyQ alleles other than 10Q may predispose to PD. We did not find association between PD and parkin or DJ-1, genes underlying autosomal recessive parkinsonism. The functional Val158Met polymorphism, which affects the catalytic effect of COMT enzyme, and another coding polymorphism in COMT were not associated with PD in our patient material. The APOE e2/3/4 polymorphism modifies risk for Alzheimer s disease and prognosis of for example brain trauma. APOE promoter and enhancer polymorphisms 219G/T and +113G/C, and APOE e3 haplotypes, have also been shown to modify the risk of Alzheimer s disease but not reported in PD. No association was found between PD and APOE e2/3/4 polymorphism, the promoter or enhancer polymorphisms, or the e3 haplotypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.