18 resultados para calcium copper titanate
em Helda - Digital Repository of University of Helsinki
Resumo:
Suun kautta annosteltava kalsiumherkistäjä parantaa sydämen vajaatoimintaan liittyvää pumppausvajetta kokeellisissa sydämen vajaatoimintamalleissa Huolimatta viime vuosikymmenien lääketieteellisestä kehityksestä krooninen sydämen vajaatoiminta on silti edelleen vakava, elämänlaatua voimakkaasti rajoittava sairaus. Kalsiumherkistäjät ovat uusi, sydämen pumppausvoimaa lisäävä lääkeryhmä. Levosimendaani, kotimaista alkuperää oleva kalsiumherkistäjä, on kliinisessä käytössä akuutin vajaatoiminnan hoitoon suonensisäisesti ja lyhytaikaisesti annosteltavana valmisteena. Levosimendaanilla on aktiivinen metaboliitti, OR-1896, jonka oletetaan olevan vuorokauden mittaisen levosimendaani-infuusion jälkeen havaittujen useita päiviä kestävien hyödyllisisten vaikutuksisten takana. Levosimendaanin kroonisen, suun kautta tapahtuvan annostelun vaikutuksista tieto on vähäisempää, mutta sillä näyttää olevan positiivisia vaikutuksia potilaiden raportoimana. FM Marjut Louhelainen on selvittänyt väitöskirjassaan suun kautta annosteltavan levosimendaanin ja sen pitkäkestoisen aktiivisen metaboliitin vaikutuksia kroonisen vajaatoiminnan hoidossa käyttämällä sekä hypertensiivisen sydäntaudin että 2 tyypin diabeteksen komplisoimaan sydäninfarktin kokeellisia malleja. Tutkimuksessa selvitettiin lisäksi vajaatoimintaan johtavia molekyylitason tapahtumia sydänlihaksessa. Tutkimuksessa osoitettiin, että krooninen suun kautta annosteltu hoito sekä kalsiumherkistäjä levosimendaanilla että sen aktiivisella metaboliitilla estää hypertensiiviseen sydämen vajaatoiminnan aikaasaamaa sydämen uudelleenmuovaantumista ja siihen liittyvää kuolleisuutta. Nämä vaikutukset välittyivät vähentyneen sydänlihassoluhypertrofian, solukuolleisuuden ja neurohumaraalisen aktivaation kautta. Levosimendaanin ja OR-1896:n osoitettiin myös parantavan sydämen pumppausfunktiota tyyppi 2 diabeteksen komplisoimassa sydäninfarktissa. Ei-diabeettiseen tilanteeseen verrattuna diabetekseen liittyvä infarktin jälkeinen vajaatoiminnan kehitys oli yhteydessä lisääntyneeseen tulehdukseen, fibroosiin, solukuolemaan, neurohumoraaliseen aktivaatioon ja ennenaikaiseen kudoksen vanhenemiseen. Sekä levosimendaani, että OR-1869 vähensivät tulehduksen, fibroosin ja solukuoleman merkkejä ja vaimensi neurohumoraalista aktivaatiota. OR-1896 myös vähensi solujen vanhenemiseen liittyvien merkkiaineiden ilmentymistä. Väitöskirjassa todettiin, että suun kautta annosteltuna sekä levosimendaani, että sen aktiivinen metaboliitti OR-1896, omaavat terapeuttista potentiaalia sekä hypertensiivisen sydäntaudin hoitoon että sydäninfarktin jälkeisen vajaatoiminnan estoon. FM Marjut Louhelaisen farmakologian alaan kuuluva väitöskirja Effects of oral calcium sensitizers on experimental heart failure tarkastetaan Helsingin yliopiston Lääketieteellisessä tiedekunnassa perjantaina 29.01.2010 klo 12 (Biomedicum Helsinki, luentosali 2, Haartmaninkatu 8, Helsinki). Vastaväittäjänä toimii professori Raimo Tuominen, Helsingin yliopiston Farmasian tiedekunnasta ja kustoksena professori Eero Mervaala Helsingin yliopiston Lääketieteellisestä tiedekunnasta.
Resumo:
Diet high in dairy products is inversely associated with body mass index, risk of metabolic syndrome and prevalence of type 2 diabetes in several populations. Also a number of intervention studies support the role of increased dairy intake in the prevention and treatment of obesity. Dairy calcium has been suggested to account for the effect of dairy on body weight, but it has been repeatedly shown that the effect of dairy is superior to the effect of supplemental calcium. Dairy proteins are postulated to either enhance the effect of calcium or have an independent effect on body weight, but studies in the area are scarce. The aim of this study was to evaluate the potential of dairy proteins and calcium in the prevention and treatment of diet-induced obesity in C57Bl/6J mice. The effect of dairy proteins and calcium on the liver and adipose tissue was also investigated in order to characterise the potential mechanisms explaining the reduction of risk for metabolic syndrome and type 2 diabetes. A high-calcium diet (1.8%) in combination with dietary whey protein inhibited body weight and fat gain and accelerated body weight and fat loss in high-fat-fed C57Bl/6J mice during long-term studies of 14 to 21 weeks. α-lactalbumin, one of the major whey proteins, was the most effective whey protein fraction showing significantly accelerated weight and fat loss during energy restriction and reduced the amount of visceral fat gain during ad libitum feeding after weight loss. The microarray data suggest sensitisation of insulin signalling in the adipose tissue as a result of a calcium-rich whey protein diet. Lipidomic analysis revealed that weight loss on whey protein-based high-calcium diet was characterised by significant decreases in diabetogenic diacylglycerols and lipotoxic ceramide species. The calcium supplementation led to a small, but statistically significant decrease in fat absorption independent of the protein source of the diet. This augments, but does not fully explain the effects of the studied diets on body weight. A whey protein-containing high-calcium diet had a protective effect against a high-fat diet-induced decline of β3 adrenergic receptor expression in adipose tissue. In addition, a high-calcium diet with whey protein increased the adipose tissue leptin expression which is decreased in this obesity-prone mouse strain. These changes are likely to contribute to the inhibition of weight gain. The potential sensitisation of insulin signalling in adipose tissue together with the less lipotoxic and diabetogenic hepatic lipid profile suggest a novel mechanistic link to explain why increased dairy intake is associated with a lower prevalence of metabolic syndrome and type 2 diabetes in epidemiological studies. Taken together, the intake of a high-calcium diet with dairy proteins has a body weight lowering effect in high-fat-fed C57Bl/6J mice. High-calcium diets containing whey protein prevent weight gain and enhance weight loss, α-lactalbumin being the most effective whey protein fraction. Whey proteins and calcium have also beneficial effects on hepatic lipid profile and adipose tissue gene expression, which suggest a novel mechanistic link to explain the epidemiological findings on dairy intake and metabolic syndrome. The clinical relevance of these findings and the precise mechanisms of action remain an intriguing field of future research.
Resumo:
Dietary habits have changed during the past decades towards an increasing consumption of processed foods, which has notably increased not only total dietary phosphorus (P) intake, but also intake of P from phosphate additives. While the intake of calcium (Ca) in many Western countries remains below recommended levels (800 mg/d), the usual daily P intake in a typical Western diet exceeds by 2- to 3-fold the dietary guidelines (600 mg/d). The effects of high P intake in healthy humans have been investigated seldom. In this thesis healthy 20- to 43-year-old women were studied. In the first controlled study (n = 14), we examined the effects of P doses, and in a cross-sectional study (n = 147) the associations of habitual P intakes with Ca and bone metabolism. In this same cross-sectional study, we also investigated whether differences exist between dietary P originating from natural P sources and phosphate additives. The second controlled study (n = 12) investigated whether by increasing the Ca intake, the effects of a high P intake could be reduced. The associations of habitual dietary calcium-to-phosphorus ratios (Ca:P ratio) with Ca and bone metabolism were determined in a cross-sectional study design (n = 147). In the controlled study, the oral intake of P doses (495, 745, 1245 and 1995 mg/d) with a low Ca intake (250 mg/d) increased serum parathyroid hormone (S-PTH) concentration in a dose-dependent manner. In addition, the highest P dose decreased serum ionized calcium (S-iCa) concentration and bone formation and increased bone resorption. In the second controlled study with a dietary P intake of 1850 mg/d, by increasing the Ca intake from 480 mg/d to 1080 mg/d and then to 1680 mg/d, the S-PTH concentration decreased, the S-iCa concentration increased and bone resorption decreased dose-dependently. However, not even the highest Ca intake could counteract the effect of high dietary P on bone formation, as indicated by unchanged bone formation activity. In the cross-sectional studies, a higher habitual dietary P intake (>1650 mg/d) was associated with lower S-iCa and higher S-PTH concentrations. The consumption of phosphate additive-containing foods was associated with a higher S-PTH concentration. Moreover, habitual low dietary Ca:P ratios (≤0.50, molar ratio) were associated with higher S-PTH concentrations and 24-h urinary Ca excretions, suggesting that low dietary Ca:P ratios may interfere with homeostasis of Ca metabolism and increase bone resorption. In summary, excessive dietary P intake in healthy Finnish women seems to be detrimental to Ca and bone metabolism, especially when dietary Ca intake is low. The results indicate that by increasing dietary Ca intake to the recommended level, the negative effects of high P intake could be diminished, but not totally prevented. These findings imply that phosphate additives may be more harmful than natural P. Thus, reduction of an excessively high dietary P intake is also beneficial for healthy individuals.
Resumo:
Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
The goal of this thesis was to examine the ecophysiological responses of Scots pine (Pinus sylvestris L.), with an emphasis on the oxidative enzyme peroxidase and plant phenolics to environmental stresses like elevated levels of nickel (Ni) and copper (Cu), and herbivory. The effects of Ni and Cu were studied in a gradient survey at a sulphur dioxide contaminated site in the Kola Peninsula, and with experiments in which seedlings were exposed to Ni mist or to Ni and Cu amended into the soil. In addition, experimental Ni exposure was combined with disturbance of the natural lichen cover of the forest ground layer. Pine sawfly attack was simulated in the early season defoliation experiment, in which mature Scots pine were defoliated (100 %) during two successive years in a dry, nutrient-poor Scots pine stand. In addition, the effect of previous defoliation on the growth of sawfly (Diprion pini L.) larvae was studied. Apoplastic peroxidase activity was elevated in the needles of pine in a Ni- , Cu- and SO2- polluted environment, which indicated an increased oxidative stress. Increased foliar peroxidase activity due to Ni contamination was shown in the experiment, in which Ni was added as mist. No such response was found in peroxidase acitivity of the roots exposed to elevated Ni and/or Cu in the soil. Elevated Ni in the soil increased the concentration of foliar condensed tannins, which are able to bind heavy metals in the cells. Addition of low levels of Ni in the soil appeared to benefit pine seedlings, which was seen as promoted shoot growth and better condition of the roots. Wet Ni deposition of 2000 mg m-2 reduced growth and survival of pine seedlings, whereas deposition levels 200 mg m-2 or 20 mg m-2 caused no effects in a 2-y lasting experiment. The lichen mat on the forest floor did not act as an effective buffer against the adverse impacts of heavy metals on pine seedlings. However, some evidence was found indicating that soil microbes profited from the lichen mat. Artificial defoliation increased peroxidase activity in the Scots pine needles. In addition, defoliation decreased nitrogen, diamine putrescine and glucose concentrations in the needles and increased the concentrations of several phenolic compounds, starch and sucrose. Previous artificial defoliation led to poor growth of sawfly larvae reared on the pines, suggesting delayed induced resistance in Scots pine. However, there was no consistent relationship between inducibility (proportional increase in a compound following defoliation) and adverse effects on the growth of pine sawfly larvae. The observed inducible responses in needle phenolics due to previous defoliation thus appear to represent non-specific responses against sawflies.