13 resultados para bimodal size distribution
em Helda - Digital Repository of University of Helsinki
Resumo:
In order to predict the current state and future development of Earth s climate, detailed information on atmospheric aerosols and aerosol-cloud-interactions is required. Furthermore, these interactions need to be expressed in such a way that they can be represented in large-scale climate models. The largest uncertainties in the estimate of radiative forcing on the present day climate are related to the direct and indirect effects of aerosol. In this work aerosol properties were studied at Pallas and Utö in Finland, and at Mount Waliguan in Western China. Approximately two years of data from each site were analyzed. In addition to this, data from two intensive measurement campaigns at Pallas were used. The measurements at Mount Waliguan were the first long term aerosol particle number concentration and size distribution measurements conducted in this region. They revealed that the number concentration of aerosol particles at Mount Waliguan were much higher than those measured at similar altitudes in other parts of the world. The particles were concentrated in the Aitken size range indicating that they were produced within a couple of days prior to reaching the site, rather than being transported over thousands of kilometers. Aerosol partitioning between cloud droplets and cloud interstitial particles was studied at Pallas during the two measurement campaigns, First Pallas Cloud Experiment (First PaCE) and Second Pallas Cloud Experiment (Second PaCE). The method of using two differential mobility particle sizers (DMPS) to calculate the number concentration of activated particles was found to agree well with direct measurements of cloud droplet. Several parameters important in cloud droplet activation were found to depend strongly on the air mass history. The effects of these parameters partially cancelled out each other. Aerosol number-to-volume concentration ratio was studied at all three sites using data sets with long time-series. The ratio was found to vary more than in earlier studies, but less than either aerosol particle number concentration or volume concentration alone. Both air mass dependency and seasonal pattern were found at Pallas and Utö, but only seasonal pattern at Mount Waliguan. The number-to-volume concentration ratio was found to follow the seasonal temperature pattern well at all three sites. A new parameterization for partitioning between cloud droplets and cloud interstitial particles was developed. The parameterization uses aerosol particle number-to-volume concentration ratio and aerosol particle volume concentration as the only information on the aerosol number and size distribution. The new parameterization is computationally more efficient than the more detailed parameterizations currently in use, but the accuracy of the new parameterization was slightly lower. The new parameterization was also compared to directly observed cloud droplet number concentration data, and a good agreement was found.
Resumo:
Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.
Resumo:
Burnt area mapping in humid tropical insular Southeast Asia using medium resolution (250-500m) satellite imagery is characterized by persisting cloud cover, wide range of land cover types, vast amount of wetland areas and highly varying fire regimes. The objective of this study was to deepen understanding of three major aspects affecting the implementation and limits of medium resolution burnt area mapping in insular Southeast Asia: 1) fire-induced spectral changes, 2) most suitable multitemporal compositing methods and 3) burn scars patterns and size distribution. The results revealed a high variation in fire-induced spectral changes depending on the pre-fire greenness of burnt area. It was concluded that this variation needs to be taken into account in change detection based burnt area mapping algorithms in order to maximize the potential of medium resolution satellite data. Minimum near infrared (MODIS band 2, 0.86μm) compositing method was found to be the most suitable for burnt area mapping purposes using Moderate Resolution Imaging Spectroradiometer (MODIS) data. In general, medium resolution burnt area mapping was found to be usable in the wetlands of insular Southeast Asia, whereas in other areas the usability was seriously jeopardized by the small size of burn scars. The suitability of medium resolution data for burnt area mapping in wetlands is important since recently Southeast Asian wetlands have become a major point of interest in many fields of science due to yearly occurring wild fires that not only degrade these unique ecosystems but also create regional haze problem and release globally significant amounts of carbon into the atmosphere due to burning peat. Finally, super-resolution MODIS images were tested but the test failed to improve the detection of small scars. Therefore, super-resolution technique was not considered to be applicable to regional level burnt area mapping in insular Southeast Asia.
Resumo:
It has been known for decades that particles can cause adverse health effects as they are deposited within the respiratory system. Atmospheric aerosol particles influence climate by scattering solar radiation but aerosol particles act also as the nuclei around which cloud droplets form. The principal objectives of this thesis were to investigate the chemical composition and the sources of fine particles in different environments (traffic, urban background, remote) as well as during some specific air pollution situations. Quantifying the climate and health effects of atmospheric aerosols is not possible without detailed information of the aerosol chemical composition. Aerosol measurements were carried out at nine sites in six countries (Finland, Germany, Czech, Netherlands, Greece and Italy). Several different instruments were used in order to measure both the particulate matter (PM) mass and its chemical composition. In the off-line measurements the samples were collected first on a substrate or filter and gravimetric and chemical analysis were conducted in the laboratory. In the on-line measurements the sampling and analysis were either a combined procedure or performed successively within the same instrument. Results from the impactor samples were analyzed by the statistical methods. This thesis comprises also a work where a method for the determination carbonaceous matter size distribution by using a multistage impactor was developed. It was found that the chemistry of PM has usually strong spatial, temporal and size-dependent variability. In the Finnish sites most of the fine PM consisted of organic matter. However, in Greece sulfate dominated the fine PM and in Italy nitrate made the largest contribution to the fine PM. Regarding the size-dependent chemical composition, organic components were likely to be enriched in smaller particles than inorganic ions. Data analysis showed that organic carbon (OC) had four major sources in Helsinki. Secondary production was the major source in Helsinki during spring, summer and fall, whereas in winter biomass combustion dominated OC. The significant impact of biomass combustion on OC concentrations was also observed in the measurements performed in Central Europe. In this thesis aerosol samples were collected mainly by the conventional filter and impactor methods which suffered from the long integration time. However, by filter and impactor measurements chemical mass closure was achieved accurately, and a simple filter sampling was found to be useful in order to explain the sources of PM on the seasonal basis. The online instruments gave additional information related to the temporal variations of the sources and the atmospheric mixing conditions.
Resumo:
In Finland, peat harvesting sites are utilized down almost to the mineral soil. In this situation the properties of mineral subsoil are likely to have considerable influence on the suitability for the various after-use forms. The aims of this study were to recognize the chemical and physical properties of mineral subsoils possibly limiting the after-use of cut-over peatlands, to define a minimum practice for mineral subsoil studies and to describe the role of different geological areas. The future percentages of the different after-use forms were predicted, which made it possible to predict also carbon accumulation in this future situation. Mineral subsoils of 54 different peat production areas were studied. Their general features and grain size distribution was analysed. Other general items studied were pH, electrical conductivity, organic matter, water soluble nutrients (P, NO3-N, NH4-N, S and Fe) and exchangeable nutrients (Ca, Mg and K). In some cases also other elements were analysed. In an additional case study carbon accumulation effectiveness before the intervention was evaluated on three sites in Oulu area (representing sites typically considered for peat production). Areas with relatively sulphur rich mineral subsoil and pool-forming areas with very fine and compact mineral subsoil together covered approximately 1/5 of all areas. These areas were unsuitable for commercial use. They were recommended for example for mire regeneration. Another approximate 1/5 of the areas included very coarse or very fine sediments. Commercial use of these areas would demand special techniques - like using the remaining peat layer for compensating properties missing from the mineral subsoil. One after-use form was seldom suitable for one whole released peat production area. Three typical distribution patterns (models) of different mineral subsoils within individual peatlands were found. 57 % of studied cut-over peatlands were well suited for forestry. In a conservative calculation 26% of the areas were clearly suitable for agriculture, horticulture or energy crop production. If till without large boulders was included, the percentage of areas suitable to field crop production would be 42 %. 9-14 % of all areas were well suitable for mire regeneration or bird sanctuaries, but all areas were considered possible for mire regeneration with correct techniques. Also another 11 % was recommended for mire regeneration to avoid disturbing the mineral subsoil, so total 20-25 % of the areas would be used for rewetting. High sulphur concentrations and acidity were typical to the areas below the highest shoreline of the ancient Litorina sea and Lake Ladoga Bothnian Bay zone. Also differences related to nutrition were detected. In coarse sediments natural nutrient concentration was clearly higher in Lake Ladoga Bothnian Bay zone and in the areas of Svecokarelian schists and gneisses, than in Granitoid area of central Finland and in Archaean gneiss areas. Based on this study the recommended minimum analysis for after-use planning was for pH, sulphur content and fine material (<0.06 mm) percentage. Nutrition capacity could be analysed using the natural concentrations of calcium, magnesium and potassium. Carbon accumulation scenarios were developed based on the land-use predictions. These scenarios were calculated for areas in peat production and the areas released from peat production (59300 ha + 15 671 ha). Carbon accumulation of the scenarios varied between 0.074 and 0.152 million t C a-1. In the three peatlands considered for peat production the long term carbon accumulation rates varied between 13 and 24 g C m-2 a-1. The natural annual carbon accumulation had been decreasing towards the time of possible intervention.
Resumo:
The knowledge about the optimal rearing conditions, such as water temperature and quality, photoperiod and density, with the understanding of animal nutritional requirements forms the basis of economically stable aquaculture for freshwater crayfish. However, the shift from a natural environment to effective culture conditions induces several changes, not only at the population level, but also at the individual level. The social contacts between conspecifics increase with increasing animal density. The competition for limited resources (e.g. food, shelter, mates) is more severe with the presence of agonistic behaviour and may lead to unequal distribution of these. The objectives of this study were to: 1) study the distribution of a common food resource between communally reared signal crayfish (Pacifastacus leniusculus) and to assign potential feeding hierarchy on the basis of individual food intake measurements, 2) explore the possibilities of size distribution manipulations to affect population dynamics and food intake to improve growth and survival in culture and 3) study the effect of food ration and spatial distribution on food intake and to explore the effect of temperature and food ration on growth and body composition of freshwater crayfish. The feeding ranks between animals were assigned with a new method for individual food intake measurement of communally reared crayfish. This technique has a high feasibility and a great potential to be applied in crayfish aquaculture studies. In this study, signal crayfish showed high size-related variability in food consumption both among individuals within a group (inter-individual) and within individual day-to-day variation (intra-individual). Increased competition for food led to an unequal distribution of this resource and this may be a reason for large growth differences between animals. The consumption was significantly higher when reared individually in comparison with communal housing. These results suggest that communally housed crayfish form a feeding hierarchy and that the animal size is the major factor controlling the position in this hierarchy. The optimisation of the social environment ( social conditions ) was evaluated in this study as a new approach to crayfish aquaculture. The results showed that the absence of conspecifics (individual rearing vs. communal housing) affects growth rate, food intake and the proportion of injured animals, whereas size variation between animals influences the number and duration of agonistic encounters. In addition, animal size had a strong influence on the fighting success of signal crayfish reared in a social milieu with a wide size variation of conspecifics. Larger individuals initiated and won most of the competitions, which suggests size-based social hierarchy of P. leniusculus. This is further supported by the fact that the length and weight gain of smaller animals increased after size grading, maybe because of a better access to the food resource due to diminished social pressure. However, the high dominance index was not based on size under conditions of limited size variation, e.g. those characteristic of restocked natural populations and aquaculture, indicating the important role of behaviour on social hierarchy.
Resumo:
Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is road dust . The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: i) How do traction sanding and physical properties of the traction sand aggregate affect formation of road dust? ii) How do studded tires affect the formation of road dust when compared with friction tires? iii) What are the composition and sources of airborne road dust in a road simulator and during a springtime road dust episode in Finland? iv) What is the size distribution of abrasion particles from tire-road interaction? The studies were conducted both in a road simulator and in field conditions. The test results from the road simulator showed that traction sanding increased road dust emissions, and that the effect became more dominant with increasing sand load. A high percentage of fine-grained anti-skid aggregate of overall grading increased the PM10 concentrations. Anti-skid aggregate with poor resistance to fragmentation resulted in higher PM levels compared with the other aggregates, and the effect became more significant with higher aggregate loads. Glaciofluvial aggregates tended to cause higher particle concentrations than crushed rocks with good fragmentation resistance. Comparison of tire types showed that studded tires result in higher formation of PM emissions compared with friction tires. The same trend between the tires was present in the tests with and without anti-skid aggregate. This finding applies to test conditions of the road simulator with negligible resuspension. Source and composition analysis showed that the particles in the road simulator were mainly minerals and originated from both traction sand and pavement aggregates. A clear contribution of particles from anti-skid aggregate to ambient PM and dust deposition was also observed in urban conditions. The road simulator results showed that the interaction between tires, anti-skid aggregate and road surface is important in dust production and the relative contributions of these sources depend on their properties. Traction sand grains are fragmented into smaller particles under the tires, but they also wear the pavement aggregate. Therefore particles from both aggregates are observed. The mass size distribution of traction sand and pavement wear particles was mainly coarse, but fine and submicron particles were also present.
Resumo:
Emissions of coal combustion fly ash through real scale ElectroStatic Precipitators (ESP) were studied in different coal combustion and operation conditions. Sub-micron fly-ash aerosol emission from a power plant boiler and the ESP were determined and consequently the aerosol penetration, as based on electrical mobility measurements, thus giving thereby an indication for an estimate on the size and the maximum extent that the small particles can escape. The experimentals indicate a maximum penetration of 4% to 20 % of the small particles, as counted on number basis instead of the normally used mass basis, while simultaneously the ESP is operating at a nearly 100% collection efficiency on mass basis. Although the size range as such seems to appear independent of the coal, of the boiler or even of the device used for the emission control, the maximum penetration level on the number basis depends on the ESP operating parameters. The measured emissions were stable during stable boiler operation for a fired coal, and the emissions seemed each to be different indicating that the sub-micron size distribution of the fly-ash could be used as a specific characteristics for recognition, for instance for authenticity, provided with an indication of known stable operation. Consequently, the results on the emissions suggest an optimum particle size range for environmental monitoring in respect to the probability of finding traces from the samples. The current work embodies also an authentication system for aerosol samples for post-inspection from any macroscopic sample piece. The system can comprise newly introduced new devices, for mutually independent use, or, for use in a combination with each other, as arranged in order to promote the sampling operation length and/or the tag selection diversity. The tag for the samples can be based on naturally occurring measures and/or added measures of authenticity in a suitable combination. The method involves not only military related applications but those in civil industries as well. Alternatively to the samples, the system can be applied to ink for note printing or other monetary valued papers, but also in a filter manufacturing for marking fibrous filters.
Resumo:
Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.
Resumo:
Atmospheric aerosol particle formation events can be a significant source for tropospheric aerosols and thus influence the radiative properties and cloud cover of the atmosphere. This thesis investigates the analysis of aerosol size distribution data containing particle formation events, describes the methodology of the analysis and presents time series data measured inside the Boreal forest. This thesis presents a methodology to identify regional-scale particle formation, and to derive the basic characteristics such as growth and formation rates. The methodology can also be used to estimate concentration and source rates of the vapour causing particle growth. Particle formation was found to occur frequently in the boreal forest area over areas covering up to hundreds of kilometers. Particle formation rates of boreal events were found to be of the order of 0.01-5 cm^-3 s^-1, while the nucleation rates of 1 nm particles can be a few orders of magnitude higher. The growth rates of over 3 nm sized particles were of the order of a few nanometers per hour. The vapor concentration needed to sustain such growth is of the order of 10^7--10^8 cm^-3, approximately one order of magnitude higher than sulphuric acid concentrations found in the atmosphere. Therefore, one has to assume that other vapours, such as organics, have a key role in growing newborn particles to sizes where they can become climatically active. Formation event occurrence shows a clear annual variation with peaks in summer and autumns. This variation is similar to the variation exhibited the obtained formation rates of particles. The growth rate, on the other hand, reaches its highest values during summer. This difference in the annual behavior, and the fact that no coupling between the growth and formation process could be identified, suggest that these processes might be different ones, and that both are needed for a particle formation burst to be observed.
Resumo:
Generation of raw materials for dry powder inhalers by different size reduction methods can be expected to influence physical and chemical properties of the powders. This can cause differences in particle size, size distribution, shape, crystalline properties, surface texture and energy. These physical properties of powders influence the behaviour of particles before and after inhalation. Materials with an amorphous surface have different surface energy compared to materials with crystalline surface. This can affect the adhesion and cohesion of particles. Changes in the surface nature of the drug particles results in a change in product performance. By stabilization of the raw materials the amorphous surfaces are converted into crystalline surfaces. The primary aim of the study was to investigate the influence of the surface properties of the inhalation particles on the quality of the product. The quality of the inhalation product is evaluated by measuring the fine particle dose (FPD). FDP is the total dose of particles with aerodynamic diameters smaller than 5,0 μm. The secondary aim of this study was to achieve the target level of the FPD and the stability of the FPD. This study was also used to evaluate the importance of the stabilization of the inhalation powders. The study included manufacturing and analysing drug substance 200 μg/dose inhalation powder batches using non-stabilized or stabilized raw materials. The inhaler formulation consisted of micronized drug substance, lactose <100μm and micronized lactose <10μm. The inhaler device was Easyhaler®. Stabilization of the raw materials was done in different relative humidity, temperature and time. Surface properties of the raw materials were studied by dynamic vapour sorption, scanning electron microscopy and three-point nitrogen adsorption technique. Particle size was studied by laser diffraction particle size analyzer. Aerodynamic particle size distribution from inhalers was measured by new generation impactor. Stabilization of all three raw materials was successful. A clear difference between nonstabilized and stabilized raw materials was achieved for drug substance and lactose <10μm. However for lactose <100μm the difference wasn’t as clear as wanted. The surface of the non-stabilized drug substance was more irregular and the particles had more roughness on the surface compared to the stabilized drug substances particles surface. The surface of the stabilized drug particles was more regular and smoother than non-stabilized. Even though a good difference between stabilized and non-stabilized raw materials was achieved, a clear evidence of the effect of the surface properties of the inhalation particles on the quality of the product was not observed. Stabilization of the raw materials didn’t lead to a higher FPD. Possible explanations for the unexpected result might be too rough conditions in the stabilization of the drug substance or smaller than wanted difference in the degree of stabilization of the main component of the product <100μm. Despite positive effects on the quality of the product were not seen there appears to be some evidence that stabilized drug substance results in smaller particle size of dry powder inhalers.
Resumo:
Nanoclusters are objects made up of several to thousands of atoms and form a transitional state of matter between single atoms and bulk materials. Due to their large surface-to-volume ratio, nanoclusters exhibit exciting and yet poorly studied size dependent properties. When deposited directly on bare metal surfaces, the interaction of the cluster with the substrate leads to alteration of the cluster properties, making it less or even non-functional. Surfaces modified with self-assembled monolayers (SAMs) were shown to form an interesting alternative platform, because of the possibility to control wettability by decreasing the surface reactivity and to add functionalities to pre-formed nanoclusters. In this thesis, the underlying size effects and the influence of the nanocluster environment are investigated. The emphasis is on the structural and magnetic properties of nanoclusters and their interaction with thiol SAMs. We report, for the first time, a ferromagnetic-like spin-glass behaviour of uncapped nanosized Au islands tens of nanometres in size. The flattening kinetics of the nanocluster deposition on thiol SAMs are shown to be mediated mainly by the thiol terminal group, as well as the deposition energy and the particle size distribution. On the other hand, a new mechanism for the penetration of the deposited nanoclusters through the monolayers is presented, which is fundamentally different from those reported for atom deposition on alkanethiols. The impinging cluster is shown to compress the thiol layer against the Au surface and subsequently intercalate at the thiol-Au interface. The compressed thiols try then to straighten and push the cluster away from the surface. Depending on the cluster size, this restoring force may or may not enable a covalent cluster-surface bond formation, giving rise to various cluster-surface binding patterns. Compression and straightening of the thiol molecules pinpoint the elastic nature of the SAMs, which has been investigated in this thesis using nanoindentation. The nanoindenation method has been applied to SAMs of varied tail groups, giving insight into the mechanical properties of thiol modified metal surfaces.