3 resultados para angular forces

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Finland the organising of defence is undergoing vast restructuring. Recent legislation has redefined the central tasks of the Finnish Defence Forces. At the same time, international security cooperation, economic pressures and new administrative paradigms have steered the military towards new ways of organising. National defence is not just politics and principles; to a large extent it is also enacted in day-to-day life in organisations. The lens through which these realities of defence are analysed in this study is gender. How is the security sector – and national defence as part of it – organised in the changing security environment? What is the new division of labour between different societal actors in the face of security challenges? What happens ‘at work’ within the military and the defence sector more broadly? How does gender affect the way in which defence is organised and understood, and how do the changes in the organising of security affect gender relations? The thesis searches for answers to these questions in the context of two organisational settings in the male-dominated defence sector. The case study on a Finnish peacekeeping unit in the Balkans opens a critical view on men’s social practices and the everyday life of crisis management organisations. In the second case study, reorganising of provisioning in the Finnish Defence Forces turns out to be a complicated process where different power relations and social divisions intermingle. Tallberg’s extensive ethnographic fieldwork in the two focal organisations has produced a detailed set of data that lays the basis for critical analysis and policy development in terms of defence organising, cooperation around peace and security issues, and gender equality in organisations. Observations and results are provided for understanding social networks, militarisation, authority relations, care, public-private partnerships, personnel policies, career planning, and humour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.