17 resultados para analytical methods

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, separation methods have been developed for the analysis of anthropogenic transuranium elements plutonium, americium, curium and neptunium from environmental samples contaminated by global nuclear weapons testing and the Chernobyl accident. The analytical methods utilized in this study are based on extraction chromatography. Highly varying atmospheric plutonium isotope concentrations and activity ratios were found at both Kurchatov (Kazakhstan), near the former Semipalatinsk test site, and Sodankylä (Finland). The origin of plutonium is almost impossible to identify at Kurchatov, since hundreds of nuclear tests were performed at the Semipalatinsk test site. In Sodankylä, plutonium in the surface air originated from nuclear weapons testing, conducted mostly by USSR and USA before the sampling year 1963. The variation in americium, curium and neptunium concentrations was great as well in peat samples collected in southern and central Finland in 1986 immediately after the Chernobyl accident. The main source of transuranium contamination in peats was from global nuclear test fallout, although there are wide regional differences in the fraction of Chernobyl-originated activity (of the total activity) for americium, curium and neptunium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miniaturized analytical devices, such as heated nebulizer (HN) microchips studied in this work, are of increasing interest owing to benefits like faster operation, better performance, and lower cost relative to conventional systems. HN microchips are microfabricated devices that vaporize liquid and mix it with gas. They are used with low liquid flow rates, typically a few µL/min, and have previously been utilized as ion sources for mass spectrometry (MS). Conventional ion sources are seldom feasible at such low flow rates. In this work HN chips were developed further and new applications were introduced. First, a new method for thermal and fluidic characterization of the HN microchips was developed and used to study the chips. Thermal behavior of the chips was also studied by temperature measurements and infrared imaging. An HN chip was applied to the analysis of crude oil – an extremely complex sample – by microchip atmospheric pressure photoionization (APPI) high resolution mass spectrometry. With the chip, the sample flow rate could be reduced significantly without loss of performance and with greatly reduced contamination of the MS instrument. Thanks to its suitability to high temperature, microchip APPI provided efficient vaporization of nonvolatile compounds in crude oil. The first microchip version of sonic spray ionization (SSI) was presented. Ionization was achieved by applying only high (sonic) speed nebulizer gas to an HN microchip. SSI significantly broadens the range of analytes ionizable with the HN chips, from small stable molecules to labile biomolecules. The analytical performance of the microchip SSI source was confirmed to be acceptable. The HN microchips were also used to connect gas chromatography (GC) and capillary liquid chromatography (LC) to MS, using APPI for ionization. Microchip APPI allows efficient ionization of both polar and nonpolar compounds whereas with the most popular electrospray ionization (ESI) only polar and ionic molecules are ionized efficiently. The combination of GC with MS showed that, with HN microchips, GCs can easily be used with MS instruments designed for LC-MS. The presented analytical methods showed good performance. The first integrated LC–HN microchip was developed and presented. In a single microdevice, there were structures for a packed LC column and a heated nebulizer. Nonpolar and polar analytes were efficiently ionized by APPI. Ionization of nonpolar and polar analytes is not possible with previously presented chips for LC–MS since they rely on ESI. Preliminary quantitative performance of the new chip was evaluated and the chip was also demonstrated with optical detection. A new ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), was presented. The DAPPI technique is based on an HN microchip providing desorption of analytes from a surface. Photons from a photoionization lamp ionize the analytes via gas-phase chemical reactions, and the ions are directed into an MS. Rapid analysis of pharmaceuticals from tablets was successfully demonstrated as an application of DAPPI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis explores melodic and harmonic features of heavy metal, and while doing so, explores various methods of music analysis; their applicability and limitations regarding the study of heavy metal music. The study is built on three general hypotheses according to which 1) acoustic characteristics play a significant role for chord constructing in heavy metal, 2) heavy metal has strong ties and similarities with other Western musical styles, and 3) theories and analytical methods of Western art music may be applied to heavy metal. It seems evident that in heavy metal some chord structures appear far more frequently than others. It is suggested here that the fundamental reason for this is the use of guitar distortion effect. Subsequently, theories as to how and under what principles heavy metal is constructed need to be put under discussion; analytical models regarding the classification of consonance and dissonance and chord categorization are here revised to meet the common practices of this music. It is evident that heavy metal is not an isolated style of music; it is seen here as a cultural fusion of various musical styles. Moreover, it is suggested that the theoretical background to the construction of Western music and its analysis can offer invaluable insights to heavy metal. However, the analytical methods need to be reformed to some extent to meet the characteristics of the music. This reformation includes an accommodation of linear and functional theories that has been found rather rarely in music theory and musicology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study concerns Framework Directive 89/391/EEC on health and safety at work, which encouraged improvements in occupational health services (OHS) for workers in EU member states. Framework Directive 89/391/EEC originally aimed at bringing the same level of occupational health and safety to employees in both the public and private sectors in EU member states. However, the implementation of the framework directive and OHS varies widely among EU member states. Occupational health services have generally been considered an important work-related welfare benefit in EU member states. The purpose of this study was to analyse OHS within the EU context and then analyse the impact of EU policies on OHS implementation as part of the welfare state benefit. The focus is on social, health, and industrial policies within welfare state regimes as well as EU policy-making processes affecting these policies in EU member states. The research tasks were divided into four groups related to the policy, functions, targets,and actors of OHS. The questions related to policy tried to discover the role of OHS in other policies, such as health, social, and labour market policies within the EU. The questions about functions sought to describe the changes, as well as the path dependence, of OHS in EU member states after the framework directive. The questions about targets were based on the general aims of WHO and the ILO in relation to equity, solidarity, universality, and access to OHS. The questions on actors were designed to understand the variety of stakeholders interested in OHS. The actors were supranational (EU, ILO, and WHO), national (ministries, institutes, and professional organisations), and social partners (trade unions and employers organisations). The study data were collected by interviewing 92 people in 15 EU member states, including representatives of ministries, institutions, research,trade unions, employers organisations, and occupational health organisations. Other documents were collected from the Internet,databases, libraries, and conference materials for a systematic review of the policies, strategies, organisation, financing, and monitoring of OHS in EU member states. Different analytical methods were used in the data analysis. The main findings of the study can be summarised as follows. First, occupational health services is a context-dependent phenomenon, which therefore varies according to the development of the welfare state in general, and depends on each country s culture, history, economy, and politics. The views of different stakeholders in EU member states concerning the impact and possibilities of OHS to improve health vary from evidence-based opinions to the sporadic impact of OHS on occupational health. OHS as a concept is vaguely defined by the EU, whereas the ILO defines OHS content. The tasks of OHS began as preventive and protective services for workers. However, they have moved towards multidisciplinary and organisational development as well as the workplace health promotion sphere.Since 1989 OHS has developed differently in different EU member states depending on the starting position of those states, but planning and implementation are crucial phases in the process toward better OHS coverage, equity, and access. Nevertheless, the data used for the planning and legitimisation of OHS activities are mainly based on occupational health data rather than on OHS data. This makes decisions on political or policy grounds inaccurate. OHS is still an evolving concept and benefit for workers, but the Europeanisation of OHS reflects contextual changes, such as the impact of the internal market, competition, and commercialisation on OHS. Stronger cooperation and integration with health, social, and employment services would be an asset for workers, because of new epidemics, an epidemiological shift towards new risks, an ageing labour market, and changes in the labour market. Different methods and approaches are needed in order to study the results of integrated services. In the future, more detailed information will be needed about the actual impact of EU policies on OHS and decision-making processes in order to get OHS into different policies in the EU and its member states. Further results and effects of OHS processes on occupational health need to be analysed more carefully. The adoption of a variety of research strategies and a multidisciplinary approach to understand the influence of different policies on OHS in the EU and its member states would highlight the options and opportunities to improve workers occupational health. Key subject headings: Occupational health services, EU policy, policymaking,framework directive 89/391/EEC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The average daily intake of folate, one of the B vitamins, falls below recommendations among the Finnish population. Bread and cereals are the main sources of folate, rye being the most significant single source. Processing is a prerequisite for the consumption of whole grain rye; however, little is known about the effect of processing on folates. Moreover, data on the bioavailability of endogenous cereal folates are scarce. The aim of this study was to examine the variation in as well as the effect of fermentation, germination, and thermal processes on folate contents in rye. Bioavailability of endogenous rye folates was investigated in a four-week human intervention study. One of the objectives throughout the work was to optimise and evaluate analytical methods for determining folate contents in cereals. Affinity chromatographic purification followed by high-performance liquid chromatography (HPLC) was a suitable method for analysing cereal products for folate vitamers, and microbiological assay with Lactobacillus rhamnosus reliably quantified the total folate. However, HPLC gave approximately 30% lower results than the microbiological assay. The folate content of rye was high and could be further increased by targeted processing. The vitamer distribution of whole grain rye was characterised by a large proportion of formylated vitamers followed by 5-methyltetrahydrofolate. In sourdough fermentation of rye, the studied yeasts synthesized and lactic acid bacteria mainly depleted folate. Two endogenous bacteria isolated from rye flour were found to produce folate during fermentation. Inclusion of baker s yeast in sourdough fermentation raised the folate level so that the bread could contain more folate than the flour it was made of. Germination markedly increased the folate content of rye, with particularly high folate concentrations in hypocotylar roots. Thermal treatments caused significant folate losses but the preceding germination compensated well for the losses. In the bioavailability study, moderate amounts of endogenous folates in the form of different rye products and orange juice incorporated in the diet improved the folate status among healthy adults. Endogenous folates from rye and orange juice showed similar bioavailability to folic acid from fortified white bread. In brief, it was shown that the folate content of rye can be enhanced manifold by optimising and combining food processing techniques. This offers some practical means to increase the daily intake of folate in a bioavailable form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes current and past n-in-one methods and presents three early experimental studies using mass spectrometry and the triple quadrupole instrument on the application of n-in-one in drug discovery. N-in-one strategy pools and mix samples in drug discovery prior to measurement or analysis. This allows the most promising compounds to be rapidly identified and then analysed. Nowadays properties of drugs are characterised earlier and in parallel with pharmacological efficacy. Studies presented here use in vitro methods as caco-2 cells and immobilized artificial membrane chromatography for drug absorption and lipophilicity measurements. The high sensitivity and selectivity of liquid chromatography mass spectrometry are especially important for new analytical methods using n-in-one. In the first study, the fragmentation patterns of ten nitrophenoxy benzoate compounds, serial homology, were characterised and the presence of the compounds was determined in a combinatorial library. The influence of one or two nitro substituents and the alkyl chain length of methyl to pentyl on collision-induced fragmentation was studied, and interesting structurefragmentation relationships were detected. Two nitro group compounds increased fragmentation compared to one nitro group, whereas less fragmentation was noted in molecules with a longer alkyl chain. The most abundant product ions were nitrophenoxy ions, which were also tested in the precursor ion screening of the combinatorial library. In the second study, the immobilized artificial membrane chromatographic method was transferred from ultraviolet detection to mass spectrometric analysis and a new method was developed. Mass spectra were scanned and the chromatographic retention of compounds was analysed using extract ion chromatograms. When changing detectors and buffers and including n-in-one in the method, the results showed good correlation. Finally, the results demonstrated that mass spectrometric detection with gradient elution can provide a rapid and convenient n-in-one method for ranking the lipophilic properties of several structurally diverse compounds simultaneously. In the final study, a new method was developed for caco-2 samples. Compounds were separated by liquid chromatography and quantified by selected reaction monitoring using mass spectrometry. This method was used for caco-2 samples, where absorption of ten chemically and physiologically different compounds was screened using both single and nin- one approaches. These three studies used mass spectrometry for compound identification, method transfer and quantitation in the area of mixture analysis. Different mass spectrometric scanning modes for the triple quadrupole instrument were used in each method. Early drug discovery with n-in-one is area where mass spectrometric analysis, its possibilities and proper use, is especially important.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most new drug molecules discovered today suffer from poor bioavailability. Poor oral bioavailability results mainly from poor dissolution properties of hydrophobic drug molecules, because the drug dissolution is often the rate-limiting event of the drug’s absorption through the intestinal wall into the systemic circulation. During the last few years, the use of mesoporous silica and silicon particles as oral drug delivery vehicles has been widely studied, and there have been promising results of their suitability to enhance the physicochemical properties of poorly soluble drug molecules. Mesoporous silica and silicon particles can be used to enhance the solubility and dissolution rate of a drug by incorporating the drug inside the pores, which are only a few times larger than the drug molecules, and thus, breaking the crystalline structure into a disordered, amorphous form with better dissolution properties. Also, the high surface area of the mesoporous particles improves the dissolution rate of the incorporated drug. In addition, the mesoporous materials can also enhance the permeability of large, hydrophilic drug substances across biological barriers. T he loading process of drugs into silica and silicon mesopores is mainly based on the adsorption of drug molecules from a loading solution into the silica or silicon pore walls. There are several factors that affect the loading process: the surface area, the pore size, the total pore volume, the pore geometry and surface chemistry of the mesoporous material, as well as the chemical nature of the drugs and the solvents. Furthermore, both the pore and the surface structure of the particles also affect the drug release kinetics. In this study, the loading of itraconazole into mesoporous silica (Syloid AL-1 and Syloid 244) and silicon (TOPSi and TCPSi) microparticles was studied, as well as the release of itraconazole from the microparticles and its stability after loading. Itraconazole was selected for this study because of its highly hydrophobic and poorly soluble nature. Different mesoporous materials with different surface structures, pore volumes and surface areas were selected in order to evaluate the structural effect of the particles on the loading degree and dissolution behaviour of the drug using different loading parameters. The loaded particles were characterized with various analytical methods, and the drug release from the particles was assessed by in vitro dissolution tests. The results showed that the loaded drug was apparently in amorphous form after loading, and that the loading process did not alter the chemical structure of the silica or silicon surface. Both the mesoporous silica and silicon microparticles enhanced the solubility and dissolution rate of itraconazole. Moreover, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. Finally, the mesoporous silicon particles loaded with itraconazole were found to be unstable under stressed conditions (at 38 qC and 70 % relative humidity).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tiivistelmä ReferatAbstract Metabolomics is a rapidly growing research field that studies the response of biological systems to environmental factors, disease states and genetic modifications. It aims at measuring the complete set of endogenous metabolites, i.e. the metabolome, in a biological sample such as plasma or cells. Because metabolites are the intermediates and end products of biochemical reactions, metabolite compositions and metabolite levels in biological samples can provide a wealth of information on on-going processes in a living system. Due to the complexity of the metabolome, metabolomic analysis poses a challenge to analytical chemistry. Adequate sample preparation is critical to accurate and reproducible analysis, and the analytical techniques must have high resolution and sensitivity to allow detection of as many metabolites as possible. Furthermore, as the information contained in the metabolome is immense, the data set collected from metabolomic studies is very large. In order to extract the relevant information from such large data sets, efficient data processing and multivariate data analysis methods are needed. In the research presented in this thesis, metabolomics was used to study mechanisms of polymeric gene delivery to retinal pigment epithelial (RPE) cells. The aim of the study was to detect differences in metabolomic fingerprints between transfected cells and non-transfected controls, and thereafter to identify metabolites responsible for the discrimination. The plasmid pCMV-β was introduced into RPE cells using the vector polyethyleneimine (PEI). The samples were analyzed using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) coupled to a triple quadrupole (QqQ) mass spectrometer (MS). The software MZmine was used for raw data processing and principal component analysis (PCA) was used in statistical data analysis. The results revealed differences in metabolomic fingerprints between transfected cells and non-transfected controls. However, reliable fingerprinting data could not be obtained because of low analysis repeatability. Therefore, no attempts were made to identify metabolites responsible for discrimination between sample groups. Repeatability and accuracy of analyses can be influenced by protocol optimization. However, in this study, optimization of analytical methods was hindered by the very small number of samples available for analysis. In conclusion, this study demonstrates that obtaining reliable fingerprinting data is technically demanding, and the protocols need to be thoroughly optimized in order to approach the goals of gaining information on mechanisms of gene delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays growing number of new active pharmaceutical ingredients (API) have large molecular weight and are hydrophobic. The energy of their crystal lattice is bigger and polarity has decreased. This leads to weakened solubility and dissolution rate of the drug. These properties can be enhanced for example by amorphization. Amorphous form has the best dissolution rate in the solid state. In the amorphous form drug molecules are randomly arranged, so the energy required to dissolve molecules is lower compared to the crystalline counterpart. The disadvantage of amorphous form is that it is unstable. Amorphous form tends to crystallize. Stability of amorphous form can be enhanced by adding an adjuvant to drug product. Adjuvant is usually a polymer. Polymers prevent crystallization both by forming bonds with API molecules and by steric hindrance. The key thing in stabilizing amorphous form is good miscibility between API and polymer. They have to be mixed in a molecular level so that the polymer is able to prevent crystallization. The aim of this work was to study miscibility of drug and polymer and stability of their dispersion with different analytical methods. Amorphous dispersions were made by rotary evaporator and freeze dryer. Amorphicity was confirmed with X-ray powder diffraction (XRPD) right after preparation. Itraconazole and theophylline were the chosen molecules to be stabilized. Itraconazole was expected to be easier and theophylline more difficult to stabilize. Itraconazole was stabilized with HPMC and theophylline was stabilized with PVP. Miscibility was studied with XRPD and differential scanning calorimetry (DSC). In addition it was studied with polarized light microscope if miscibility was possible to see visually. Dispersions were kept in stressed conditions and the crystallization was analyzed with XRPD. Stability was also examined with isothermal microcalorimetry (IMC). The dispersion of itraconazole and theophylline 40/60 (w/w) was completely miscible. It was proved by linear combination of XRPD results and single glass transition temperature in DSC. Homogenic well mixed film was observed with light microscope. Phase separation was observed with other compositions. Dispersions of theophylline and PVP mixed only partly. Stability of itraconazole dispersions were better than theophylline dispersions which were mixed poorer. So miscibility was important thing considering stability. The results from isothermal microcalorimetry were similar to results from conventional stability studies. Complementary analytical methods should be used when studying miscibility so that the results are more reliable. Light microscope is one method in addition to mostly used XRPD and DSC. Analyzing light microscope photos is quite subjective but it gives an idea of miscibility. Isothermal microcalorimetry can be one option for conventional stability studies. If right conditions can be made where the crystallization is not too fast, it may be possible to predict stability with isothermal microcalorimetry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is primarily concerned with the enzyme- catalysed synthesis of sulfoxides using reductase and dioxygenase enzymes. Chapter 1 provides an introduction to the topic of redox chemistry with particular emphasis on the application of reductase and dioxygenase enzymes in organosulfur chemistry. Earlier literature methods for the production of enantiopure sulfoxides are reviewed. A brief discussion of the methods used for the determination of enantiomeric excess and absolute configuration is provided. Chapter 2 contains results obtained using a range of whole-cell bacteria each using a dimethyl sulfoxide reductase enzyme. The synthesis of a series of racemic sulfoxides and the development of appropriate CSPHPLC analytical methods is discussed. Kinetic resolutions of a series of sulfoxides have been achieved. Chapter 3 contains a presentation of results using dioxygenase enzymes as biocatalysts for the asymmetric sulfoxidation of dialkyl sulfoxides including thioacetal sulfoxides. A new range of monosulfoxides, cis-dihydrodiols and cis- dihydrodiol sulfoxides have been isolated in enantiopure form. Chapter 4 is focussed on the application of chiral sulfoxides in synthesis. A new chemoenzymatic route to diol sulfoxide enantiomers and the derived enantiopure phenols and catechols is discussed. The application of chemically synthesised sulfoxide enantiomers in the production of hydroxy sulfoxides is reported. Chapter 5 provides a full experimental section where the synthesis of sulfides and racemic sulfoxides is included. The methods used in the isolation and characterisation of bioproducts from the biotransformation are discussed and full experimental details given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human sport doping control analysis is a complex and challenging task for anti-doping laboratories. The List of Prohibited Substances and Methods, updated annually by World Anti-Doping Agency (WADA), consists of hundreds of chemically and pharmacologically different low and high molecular weight compounds. This poses a considerable challenge for laboratories to analyze for them all in a limited amount of time from a limited sample aliquot. The continuous expansion of the Prohibited List obliges laboratories to keep their analytical methods updated and to research new available methodologies. In this thesis, an accurate mass-based analysis employing liquid chromatography - time-of-flight mass spectrometry (LC-TOFMS) was developed and validated to improve the power of doping control analysis. New analytical methods were developed utilizing the high mass accuracy and high information content obtained by TOFMS to generate comprehensive and generic screening procedures. The suitability of LC-TOFMS for comprehensive screening was demonstrated for the first time in the field with mass accuracies better than 1 mDa. Further attention was given to generic sample preparation, an essential part of screening analysis, to rationalize the whole work flow and minimize the need for several separate sample preparation methods. Utilizing both positive and negative ionization allowed the detection of almost 200 prohibited substances. Automatic data processing produced a Microsoft Excel based report highlighting the entries fulfilling the criteria of the reverse data base search (retention time (RT), mass accuracy, isotope match). The quantitative performance of LC-TOFMS was demonstrated with morphine, codeine and their intact glucuronide conjugates. After a straightforward sample preparation the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The hydrophilic interaction technique (HILIC) provided good chromatographic separation, which was critical for the morphine glucuronide isomers. A wide linear range (50-5000 ng/ml) with good precision (RSD<10%) and accuracy (±10%) was obtained, showing comparable or better performance to other methods used. In-source collision-induced dissociation (ISCID) allowed confirmation analysis with three diagnostic ions with a median mass accuracy of 1.08 mDa and repeatable ion ratios fulfilling WADA s identification criteria. The suitability of LC-TOFMS for screening of high molecular weight doping agents was demonstrated with plasma volume expanders (PVE), namely dextran and hydroxyethylstarch (HES). Specificity of the assay was improved, since interfering matrix compounds were removed by size exclusion chromatography (SEC). ISCID produced three characteristic ions with an excellent mean mass accuracy of 0.82 mDa at physiological concentration levels. In summary, by combining TOFMS with a proper sample preparation and chromatographic separation, the technique can be utilized extensively in doping control laboratories for comprehensive screening of chemically different low and high molecular weight compounds, for quantification of threshold substances and even for confirmation. LC-TOFMS rationalized the work flow in doping control laboratories by simplifying the screening scheme, expediting reporting and minimizing the analysis costs. Therefore LC-TOFMS can be exploited widely in doping control, and the need for several separate analysis techniques is reduced.