22 resultados para Woody vegetation
em Helda - Digital Repository of University of Helsinki
Resumo:
Microcatchment water harvesting (MCWH) improved the survival and growth of planted trees on heavy soils in eastern Kenya five to six years after planting. In the best method, the cross-tied furrow microcatchments, the mean annual increments (MAI; based on the average biomass of living trees multiplied by tree density and survival) of the total and usable biomass in Prosopis juliflora were 2787 and 1610 kg ha-1 a-1 respectively, when the initial tree density was 500 to 1667 trees per hectare. Based on survival, the indigenous Acacia horrida, A. mellifera and A. zanzibarica were the most suitable species for planting using MCWH. When both survival and yield were considered, a local seed source of the introduced P. juliflora was superior to all other species. The MAI in MCWH was at best distinctly higher than that in the natural vegetation (163307 and 66111 kg ha-1 a-1 for total and usable biomass respectively); this cannot satisfy the fuelwood demand of concentrated populations, such as towns or irrigation schemes. The density of seeds of woody species in the topsoil was 40.1 seeds m-2 in the Acacia-Commiphora bushland and 12.6 seeds m-2 in the zone between the bushland and the Tana riverine forest. Rehabilitation of woody vegetation using the soil seed bank alone proved difficult due to the lack of seeds of desirable species. The regeneration and dynamics of woody vegetation were also studied both in cleared and undisturbed bushland. A sub-type of Acacia-Commiphora bushland was identified as Acacia reficiens bushland, in which the dominant Commiphora species is C. campestris. Most of the woody species did not have even-aged populations but cohort structures that were skewed towards young individuals. The woody vegetation and the status of soil nutrients were estimated to recover in 1520 years on Vertic Natrargid soils after total removal of above-ground vegetation.
Resumo:
Forest certification has been put forward as a means to improve the sustainability of forest management in the tropical countries, where traditional environmental regulation has been inefficient in controlling forest degradation and deforestation. In these countries, the role of communities as managers of the forest resources is rapidly increasing. However, only a fraction of tropical community forests have been certified and little is known about the impacts of certification in these systems. Two areas in Honduras where community-managed forest operations had received FSC certifications were studied. Río Cangrejal represents an area with a longer history of use, whereas Copén is a more recent forest operation. Ecological sustainability was assessed through comparing timber tree regeneration and floristic composition between certified, conventionally managed and natural forests. Data on woody vegetation and environmental conditions was collected within logging gaps and natural treefall gaps. The regeneration success of shade-tolerant timber tree species was lower in certified than in conventionally managed forests in Río Cangrejal. Furthermore, the floristic composition was more natural-like in the conventionally managed than the certified forests. However, the environmental conditions indicated reduced logging disturbance in the certified forests. Data from Copén demonstrated that the regeneration success of light-demanding timber species was higher in the certified than the unlogged forests. In spite of this, the most valuable timber species Swietenia macrophylla was not regenerating successfully in the certified forests, due to rapid gap closure. The results indicate that pre-certification loggings and forest fragmentation may have a stronger impact on forest regeneration than current, certified management practices. The focus in community forests under low-intensive logging should be directed toward landscape connectivity and the restoration of degraded timber species, instead of reducing mechanical logging damage. Such actions are dependent on better recognition of resource rights, and improving the status of small Southern producers in the markets of certified wood products.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
Postglacial climate changes and vegetation responses were studied using a combination of biological and physical indicators preserved in lake sediments. Low-frequency trends, high-frequency events and rapid shifts in temperature and moisture balance were probed using pollen-based quantitative temperature reconstructions and oxygen-isotopes from authigenic carbonate and aquatic cellulose, respectively. Pollen and plant macrofossils were employed to shed light on the presence and response rates of plant populations in response to climate changes, particularly focusing on common boreal and temperate tree species. Additional geochemical and isotopic tracers facilitated the interpretation of pollen- and oxygen-isotope data. The results show that the common boreal trees were present in the Baltic region (~55°N) during the Lateglacial, which contrasts with the traditional view of species refuge locations in the south-European peninsulas during the glacial/interglacial cycles. The findings of this work are in agreement with recent paleoecological and genetic evidence suggesting that scattered populations of tree species persisted at higher latitudes, and that these taxa were likely limited to boreal trees. Moreover, the results demonstrate that stepwise changes in plant communities took place in concert with major climate fluctuations of the glacial/interglacial transition. Postglacial climate trends in northern Europe were characterized by rise, maxima and fall in temperatures and related changes in moisture balance. Following the deglaciation of the Northern Hemisphere and the early Holocene reorganization of the ice-ocean-atmosphere system, the long-term temperature trends followed gradually decreasing summer insolation. The early Holocene (~11,700-8000 cal yr BP) was overall cool, moist and oceanic, although the earliest Holocene effective humidity may have been low particularly in the eastern part of northern Europe. The gradual warming trend was interrupted by a cold event ~8200 cal yr BP. The maximum temperatures, ~1.5-3.0°C above modern values, were attained ~8000-4000 cal yr BP. This mid-Holocene peak warmth was coupled with low lake levels, low effective humidity and summertime drought. The late Holocene (~4000 cal yr BP-present) was characterized by gradually decreasing temperatures, higher lake levels and higher effective humidity. Moreover, the gradual trends of the late Holocene were probably superimposed by higher-frequency variability. The spatial variability of the Holocene temperature and moisture balance patterns were tentatively attributed to the differing heat capacities of continents and oceans, changes in atmospheric circulation modes and position of sites and subregions with respect to large water bodies and topographic barriers. The combination of physical and biological proxy archives is a pivotal aspect of this work, because non-climatic factors, such as postglacial migration, disturbances and competitive interactions, can influence reshuffling of vegetation and hence, pollen-based climate reconstructions. The oxygen-isotope records and other physical proxies presented in this work manifest that postglacial climate changes were the main driver of the establishment and expansion of temperate and boreal tree populations, and hence, large-scale and long-term vegetation patterns were in dynamic equilibrium with climate. A notable exception to this pattern may be the postglacial invasion of Norway spruce and the related suppression of mid-Holocene temperate forest. This salient step in north-European vegetation history, the development of the modern boreal ecosystem, cannot be unambiguously explained by current evidence of postglacial climate changes. The results of this work highlight that plant populations, including long-lived trees, may be able to respond strikingly rapidly to changes in climate. Moreover, interannual and seasonal variation and extreme events can exert an important influence on vegetation reshuffling. Importantly, the studies imply that the presence of diffuse refuge populations or local stands among the prevailing vegetation may have provided the means for extraordinarily rapid vegetation responses. Hence, if scattered populations are not provided and tree populations are to migrate long distances, their capacity to keep up with predicted rates of future climate change may be lower than previously thought.
Resumo:
The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear
Resumo:
The increase in global temperature has been attributed to increased atmospheric concentrations of greenhouse gases (GHG), mainly that of CO2. The threat of severe and complex socio-economic and ecological implications of climate change have initiated an international process that aims to reduce emissions, to increase C sinks, and to protect existing C reservoirs. The famous Kyoto protocol is an offspring of this process. The Kyoto protocol and its accords state that signatory countries need to monitor their forest C pools, and to follow the guidelines set by the IPCC in the preparation, reporting and quality assessment of the C pool change estimates. The aims of this thesis were i) to estimate the changes in carbon stocks vegetation and soil in the forests in Finnish forests from 1922 to 2004, ii) to evaluate the applied methodology by using empirical data, iii) to assess the reliability of the estimates by means of uncertainty analysis, iv) to assess the effect of forest C sinks on the reliability of the entire national GHG inventory, and finally, v) to present an application of model-based stratification to a large-scale sampling design of soil C stock changes. The applied methodology builds on the forest inventory measured data (or modelled stand data), and uses statistical modelling to predict biomasses and litter productions, as well as a dynamic soil C model to predict the decomposition of litter. The mean vegetation C sink of Finnish forests from 1922 to 2004 was 3.3 Tg C a-1, and in soil was 0.7 Tg C a-1. Soil is slowly accumulating C as a consequence of increased growing stock and unsaturated soil C stocks in relation to current detritus input to soil that is higher than in the beginning of the period. Annual estimates of vegetation and soil C stock changes fluctuated considerably during the period, were frequently opposite (e.g. vegetation was a sink but soil was a source). The inclusion of vegetation sinks into the national GHG inventory of 2003 increased its uncertainty from between -4% and 9% to ± 19% (95% CI), and further inclusion of upland mineral soils increased it to ± 24%. The uncertainties of annual sinks can be reduced most efficiently by concentrating on the quality of the model input data. Despite the decreased precision of the national GHG inventory, the inclusion of uncertain sinks improves its accuracy due to the larger sectoral coverage of the inventory. If the national soil sink estimates were prepared by repeated soil sampling of model-stratified sample plots, the uncertainties would be accounted for in the stratum formation and sample allocation. Otherwise, the increases of sampling efficiency by stratification remain smaller. The highly variable and frequently opposite annual changes in ecosystem C pools imply the importance of full ecosystem C accounting. If forest C sink estimates will be used in practice average sink estimates seem a more reasonable basis than the annual estimates. This is due to the fact that annual forest sinks vary considerably and annual estimates are uncertain, and they have severe consequences for the reliability of the total national GHG balance. The estimation of average sinks should still be based on annual or even more frequent data due to the non-linear decomposition process that is influenced by the annual climate. The methodology used in this study to predict forest C sinks can be transferred to other countries with some modifications. The ultimate verification of sink estimates should be based on comparison to empirical data, in which case the model-based stratification presented in this study can serve to improve the efficiency of the sampling design.
Resumo:
Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.
Resumo:
The immediate effects of two human-related vegetation disturbances, (1) green tree retention (GTR) patch felling and scarification by harrowing and (2) experimental understorey vegetation layer removal, were examined in boreal forest stands in Finland. Effects of GTR patch felling and scarification on tree uprootings, on coarse woody debris (CWD) and on epixylic plant community were followed in upland and in paludified forest types. Uprootings increased considerably during 2-3 years after the fellings and were more frequent (47%) in the paludified than in the upland forest (13%). Scarification reduced 68% of the CWD in the felling area. Cover and especially species richness of epixylics declined in the both areas during 1-2 years after the felling. The increasing size of GTR patch correlated positively with the species richness. Regeneration of understorey vegetation community and Vaccinium myrtillus and Vaccinium vitis-idaea after different removals of vegetation layers in an old-growth forest took four years. The regeneration occurred mainly by vegetative means and it was faster in the terms of species richness than in the cover. In the most severe treatment, recovery occurred merely by sexual reproduction. V. myrtillus recovered mainly by producing new shoots. V. vitis-idaea recovered faster than V. myrtillus, mainly by increasing length growth. For ecological reasons, use of larger GTR patches on paludified biotope would be recommendable. In felling areas, scarification by harrowing could be replaced with some other spot-wise method. After moderate intensity level disturbance, recovery occurs rapidly by vegetative regrowth of the dominating species. High level of intensity may prevent the recovery of vegetation community for years, while enabling also the genetic regeneration of the initial species. Local anthropogenic-related disturbances are currently increasing and they can interact during temporally short times, which should be taken in to account in the future forest management plans.
Resumo:
Regeneration ecology, diversity of native woody species and its potential for landscape restoration was studied in the remnant natural forest at the College of Forestry and Natural Resources at Wondo Genet, Ethiopia. The type of forest is Afromontane rainforest , with many valuable tree species like Aningeria adolfi-friederici, and it is an important provider of ecological, social and economical services for the population that lives in this area. The study contains two parts, natural regeneration studies (at the natural forest) and interviews with farmers in the nearby village of the remnant patch. The objective of the first part was to investigate the floristic composition, densitiy and regeneration profiles of native woody species in the forest, paying special attention to woody species that are considered the most relevant (socio-economic). The second part provided information on woody species preferred by the farmers and on multiple uses of the adjacent natural forest, it also provided information and analysed perceptions on forest degradation. Systematic plot sampling was used in the forest inventory. Twenty square plots of 20 x 20 m were assessed, with 38 identified woody species (the total number of species was 45), representing 26 families. Of these species 61% were trees, 13% shrubs, 11% lianas and 16% species that could have both life forms. An analysis of natural regeneration of five important tree species in the natural forest showed that Aningeria adolfi-friederici had the best regeneration results. An analysis of population structure (as determined by height classes) of two commercially important woody species in the forest, Aningeria adolfi-friederici and Podocarpus falcatus, showed a marked difference: Aningeria had a typical “reversed J” frequency distribution, while Podocarpus showed very low values in all height classes. Multi dimensional scaling (MDS) was used to map the sample plots according to their similarity in species composition, using the Sørensen quantitative index, coupled with indicator species analysis .Three groups were identified with respective indicator species: Group 1 – Adhatoda schimperiana, Group 2 – Olea hochstetteri , Group 3 – Acacia senegal and Aningeria adolfi-friederici. Thirty questionnaire interviews were conducted with farmers in the village of Gotu Onoma that use the nearby remant forest patch. Their tree preferences were exotic species such as Eucalyptus globulus for construction and fuelwood and Grevillea robusta for shade and fertility. Considering forest land degradation farmers were aware of the problem and suggested that the governmental institutions address the problem by planting more Eucalyptus globulus. The natural forest seemed to have moderate levels of disturbance and it was still floristically diverse. However, the low rate of natural regeneration of Podocarpus falcatus suggested that this species is threatened and must be a priority in conservation actions. Plantations and agroforestry seem to be possible solutions for rehabilitation of the surrounding degraded lands, thereby decreasing the existent pressure in the remnant natural forest.