2 resultados para Wideband antenna
em Helda - Digital Repository of University of Helsinki
Resumo:
The dissertation deals with remote narrowband measurements of the electromagnetic radiation emitted by lightning flashes. A lightning flash consists of a number of sub-processes. The return stroke, which transfers electrical charge from the thundercloud to to the ground, is electromagnetically an impulsive wideband process; that is, it emits radiation at most frequencies in the electromagnetic spectrum, but its duration is only some tens of microseconds. Before and after the return stroke, multiple sub-processes redistribute electrical charges within the thundercloud. These sub-processes can last for tens to hundreds of milliseconds, many orders of magnitude longer than the return stroke. Each sub-process causes radiation with specific time-domain characteristics, having maxima at different frequencies. Thus, if the radiation is measured at a single narrow frequency band, it is difficult to identify the sub-processes, and some sub-processes can be missed altogether. However, narrowband detectors are simple to design and miniaturize. In particular, near the High Frequency band (High Frequency, 3 MHz to 30 MHz), ordinary shortwave radios can, in principle, be used as detectors. This dissertation utilizes a prototype detector which is essentially a handheld AM radio receiver. Measurements were made in Scandinavia, and several independent data sources were used to identify lightning sub-processes, as well as the distance to each individual flash. It is shown that multiple sub-processes radiate strongly near the HF band. The return stroke usually radiates intensely, but it cannot be reliably identified from the time-domain signal alone. This means that a narrowband measurement is best used to characterize the energy of the radiation integrated over the whole flash, without attempting to identify individual processes. The dissertation analyzes the conditions under which this integrated energy can be used to estimate the distance to the flash. It is shown that flash-by-flash variations are large, but the integrated energy is very sensitive to changes in the distance, dropping as approximately the inverse cube root of the distance. Flashes can, in principle, be detected at distances of more than 100 km, but since the ground conductivity can vary, ranging accuracy drops dramatically at distances larger than 20 km. These limitations mean that individual flashes cannot be ranged accurately using a single narrowband detector, and the useful range is limited to 30 kilometers at the most. Nevertheless, simple statistical corrections are developed, which enable an accurate estimate of the distance to the closest edge of an active storm cell, as well as the approach speed. The results of the dissertation could therefore have practical applications in real-time short-range lightning detection and warning systems.
Resumo:
Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.